Advertisement

Computational aspects of three-valued logic

  • P. H. Schmitt
Nondassical Deducation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 230)

Abstract

This paper investigates a three-valued logic L3, that has been introduced in the study of natural language semantics. A complete proof system based on a three-valued analogon of negative resolution is presented. A subclass of L3 corresponding to Horn clauses in two-valued logic is defined. Its model theoretic properties are studied and it is shown to admit a PROLOG-style proof procedure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barwise and Perry 1983.
    J. Barwise and J. Perry. 1983 Situations and Attitudes. Bradford Books, Cambridge, Mass.Google Scholar
  2. Blamey 1986.
    S.Blamey. Partial logic. In: (Gabbay and Guenthner 1986), p.1–70.Google Scholar
  3. Blau 1978.
    U.Blau. Die dreiwertige Logik der Sprache. Walter de Gruyter.Google Scholar
  4. Dunn and Epstein 1977.
    J.M. Dunn and G. Epstein (eds.). 1977 Modern Uses of Multiple-Valued Logic. D.Reidel Publish. Co., Dordrecht.Google Scholar
  5. Ebbinghaus 1969.
    H.-D. Ebbinghaus. 1969 Über eine Prädikatenlogik mit partiell definierten Prädikaten und Funktionen. Archiv für mathematische Logik 12, p.39–53.Google Scholar
  6. Fenstad et al. 1985
    J.E.Fenstad, P.-K.Halvorsen, T.Langholm and J.van Benthem. Equations, Schemata and Situations: A framework for linguistic semantics. CSLI Report No. 29. Center For The Study Of Language And Information, Stanford, CA 94305.Google Scholar
  7. Gabbay and Guenthner 1986.
    D. Gabbay and F. Guenthner (eds.). Handbook of Philosophical Logic, Vol.III: Alternatives in Classical Logic. D. Reidel Publishing Co., Dordrecht.Google Scholar
  8. Langholm forthcoming.
    T.Langholm. Characterizations of persistent formulas in a three-valued logic. University of Oslo, Sweden.Google Scholar
  9. Makowski 1984.
    J.A.Makowski. Why Horn formulas matter in computer science: initial structures and generic examples. Techn.Report No.329, Technion, Haifa.Google Scholar
  10. McCall 1967.
    S.McCall (ed.). Polish Logic 1920–1939. Oxford.Google Scholar
  11. Morgan 1973.
    C.G. Morgan. 1973 A Resolution Procedure For A Class Of Many-valued Logics. Journal of Symbolic Logic vol. 39, 199–200 (abstract).Google Scholar
  12. Rescher 1969.
    N. Rescher. 1969 Many-Valued Logic. McGraw Hill Book Co., New York.Google Scholar
  13. Rosser and Turquette 1952.
    J.B. Rosser and A.R. Turquette. 1952 Many-Valued Logics. North-Holland Publishing Co., Amsterdam.Google Scholar
  14. Slupecki 1936.
    J. Slupecki. 1936 Der volle dreiwertige Aussagenkalkül. Comptes rendues des s&eaccr.ance de la Soci&eaccr.t&eaccr. des Science de Lettres de Varsovie, Classe III, vol. 29, 9–11. English translation in (McCall) 335–337.Google Scholar
  15. Urquhart 1986.
    A.Urquhart. Many-valued logic. In: (Gabbay and Guenthner 1986), p.71–116.Google Scholar
  16. Volger 1985.
    H.Volger. On Theories which Admit Initial Structures. FNS-Bericht 85-1. Universität Tübingen, Forschungsstelle für natürlich-sprachige Systeme.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. H. Schmitt
    • 1
  1. 1.IBM Deutschland GmbH, TK LILOGStuttgart 1

Personalised recommendations