Sufficient completeness, term rewriting systems and ”anti-unification”

  • Hubert Comon
Term Rewriting Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 230)


We propose an ”anti-unification” algorithm to solve inequations in an algebra of terms. It enables us to decide the ”convertibility” property without assuming any linear hypothesis on the left hand sides of the rules. Since this property is connected with the sufficient completeness of algebraic specifications, we may decide of the latter in the same way.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bert D. La Programmation Generique. Thèse d'Etat (1979).Google Scholar
  2. [2]
    Bert D. Refinement of Generic Specifications with Algebraic Tools. IFIP 1983 (ed. R.EA.Mason).Google Scholar
  3. [3]
    Bidoit M. Une méthode de présentation des types abstraits: applications. Thèse de troisieme cycle. Orsay (1981)Google Scholar
  4. [4]
    Comon H. An anti-unification approach to decide the sufficient completeness of algebraic specification. To appear as a LIFIA report.Google Scholar
  5. [5]
    Ehrig H., Kreowsky H. & Padawitz P. Stepwise specifications and implementations of Abstract Data Types. LNCS 62 (1978) pp 205–226.Google Scholar
  6. [6]
    Goguen J.A., Thatcher J.W. & Wagner E.G. An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types. Current trends in programming methodology vol. 4, pp 80–149, Ed. Prentice Hall (1978).Google Scholar
  7. [7]
    Goguen J.A., Futatsugi K., Jouannaud JP. & Messeguer J. Principles of OBJ2. Proc. POPL 1985.Google Scholar
  8. [8]
    Guttag J.V., Horowitz E. & Musser D.R. The design of data type specification. Current trends in programming methodology, vol. 1, ch.4. Prentice Hall (1977).Google Scholar
  9. [9]
    Guttag J.V. and Horning J.J. The Algebraic Specification of Abstract Data Types. Acta Informatica 10 (1978).Google Scholar
  10. [10]
    Huet G. & Hullot JM. Proofs by induction in equational theories with constructors. JCSS 25–2 (1982).Google Scholar
  11. [11]
    Huet G. & Oppen D.C. Equations and rewrite Rules: a survey. Technical Report, SRI International, 1980.Google Scholar
  12. [12]
    Jouannaud JP. & Kounalis E. Proofs by Induction in Equational Theories Without Constructors. CRIN, Nancy, France, May 1985.Google Scholar
  13. [13]
    Kapur D., Narendran P. & Zhang H. On sufficient completeness and related properties of term rewriting systems. Preprint October 1985.Google Scholar
  14. [14]
    Kounalis E. & Zhang H. A general Completeness Test for Equational Specifications CRIN Nancy, France, Nov. 1984.Google Scholar
  15. [15]
    Liskov B. & Zilles S. An introduction to formal specifications of data abstractions. Current trends in programming methodology vol. 1. Prentice Hall (1977).Google Scholar
  16. [16]
    Martelli A. & Montanari U. An efficient Unification algorithm ACM TOPLAS, vol.4, pp 258–282 (1982).CrossRefGoogle Scholar
  17. [17]
    Meseguer J. & Goguen J.A. Initiality, Induction and Computability. To appear in ”Application of Agebra to Language Definition and Compilation”, M.Nivat & J.Reynolds (eds), Cambridge U.P.Google Scholar
  18. [18]
    Musser D. Convergent Sets of Rewrite Rules for Abstract Data Types. Report of USC Information Sciences Institute (1979).Google Scholar
  19. [19]
    Nipkov T. & Weikum G. A decidability result about sufficient completeness of axiomaticaly specified abstract data types. LNCS 145 (1982).Google Scholar
  20. [20]
    Paterson M.S. & Wegman M.N. Linear Unification. Journal of Computer and Systems Sciences. vol.16, pp 158–167 (1978).CrossRefGoogle Scholar
  21. [21]
    Plaisted D. Semantic Confluence and Completion Methods. Information and Control 65 (1985) pp 182–215.CrossRefGoogle Scholar
  22. [22]
    Remy J.L. Etude de systèmes de réecriture conditionnels & application aux types abstraits algébriques. Thèse, Nancy, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Hubert Comon
    • 1
  1. 1.LIFIA, GrenobleSaint Martin d'HèresFrance

Personalised recommendations