Advertisement

A geometry theorem prover based on Buchberger's algorithm

  • B. Kutzler
  • S. Stifter
Extended Abstracts Of Current Deduction Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 230)

References

  1. BUCHBERGER B., 1965/85: Gröbner Bases — An Algorithmic Method in Polynomial Ideal Theory. Chapter 6 in N.K. Boss (ed.): ‘Multidimensional Systems Theory', R.Reidel Publ.Comp.Google Scholar
  2. CHOU S.C., SCHELTER W.F., 1986: Proving Geometry Theorems with Rewrite Rules. Subm. to J. of Automated Reasoning.Google Scholar
  3. KAPUR D., 1986: Geometry Theorem Proving Using Gröbner Bases. To appear as application letter in the J. of Symbolic Computation.Google Scholar
  4. KUTZLER B., STIFTER S., 1986a: Automated Geometry Theorem Proving Using Buchberger's Algorithm. To appear in the Proc. of SYMSAC'86, Waterloo, Canada.Google Scholar
  5. KUTZLER B., STIFTER S., 1986b: On the Application of Buchberger's Algorithm for Automated Geometry Theorem Proving. To appear as application letter in the J. of Symbolic Computation.Google Scholar
  6. WU W.T., 1978/84: Basic Principles of Mechanical Theorem Proving in Elementary Geometries. Journal of System Sciences and Mathematical Sciences, vol. 4, no. 3, pp. 207–235.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • B. Kutzler
    • 1
  • S. Stifter
    • 1
  1. 1.Working Group CAMP, Institut für MathematikUniversität LinzLinzAustria

Personalised recommendations