Advertisement

Theorem proving systems of the Formel project

  • Gérard Huet
Extended Abstracts Of Current Deduction Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 230)

References

  1. [1]
    “The ML Handbook, Version 6.1.” Internal document, Projet Formel, Inria (July 1985).Google Scholar
  2. [2]
    Th. Coquand. “Une théorie des constructions.” Thèse de troisième cycle, Université Paris VII (Jan. 85).Google Scholar
  3. [3]
    Th. Coquand. “An analysis of Girard's paradox.” First Conference on Logic in Computer Science, Boston (June 1986).Google Scholar
  4. [4]
    Th. Coquand, G. Huet. “A Theory of Constructions.” Preliminary version, presented at the International Symposium on Semantics of Data Types, Sophia-Antipolis (June 84).Google Scholar
  5. [5]
    Th. Coquand, G. Huet. “Constructions: A Higher Order Proof System for Mechanizing Mathematics.” EUROCAL85, Linz, Springer-Verlag LNCS 203 (1985).Google Scholar
  6. [6]
    Th. Coquand, G. Huet. “Concepts Mathématiques et Informatiques Formalisés dans le Calcul des Constructions.” Colloque de Logique, Orsay (Juil. 1985). To appear, North-Holland.Google Scholar
  7. [7]
    Th. Coquand, G. Huet. “The Calculus of Constructions.” To appear, JCSS (1986).Google Scholar
  8. [8]
    F. Fages. “Formes canoniques dans les algèbres booléennes et application à la démonstration automatique en logique de premier ordre.” Thèse de 3ème cycle, Univ. de Paris VI (Juin 1983).Google Scholar
  9. [9]
    F. Fages. “Le système KB: présentation et bibliographie, mise en œuvre.” Rapport Interne Inria (1984).Google Scholar
  10. [10]
    G. Huet, J.M. Hullot. “Proofs by Induction in Equational Theories With Constructors.” JCSS 25,2 (1982) 239–266.Google Scholar
  11. [11]
    J.M. Hullot “Compilation de Formes Canoniques dans les Théories Equationnelles.” Thèse de 3ème cycle, U. de Paris Sud (Nov. 80).Google Scholar
  12. [12]
    Ph. Le Chenadec. “Le système Al-Zebra pour algèbres finiment présentées, manuel de référence.” Rapport Technique, Greco de Programmation (1985).Google Scholar
  13. [13]
    Ph. Le Chenadec. “Canonical forms in finitely presented algebras”. Lecture Notes in Theoretical Computer Science, Pitman-Wiley (1986).Google Scholar
  14. [14]
    C. Mohring. “Algorithm Development in the Calculus of Constructions.” IEEE Symposium on Logic in Computer Science, Cambridge, Mass. (June 1986).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Gérard Huet
    • 1
  1. 1.Domaine de VoluceauINRIARocquencourtFrance

Personalised recommendations