Advertisement

The markgraf karl refutation procedure (MKRP)

  • N. Eisinger
  • H. J. Ohlbach
Extended Abstracts Of Current Deduction Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 230)

References

  1. 1.
    Antoniou, G., Ohlbach, H.J., Terminator, Proc. 8th IJCAI, Karlsruhe (1983), 916–919.Google Scholar
  2. 2.
    Bläsius, K.H., Equality Reasoning with Equality-Paths, Proc. GWAI-85, Springer (1985).Google Scholar
  3. 3.
    Biundo, S., Hummel, B., Hutter, D., Walther, C., The Karlsruhe Induction Theorem Proving System, Proc. CADE-8 (this volume), Oxford (1986).Google Scholar
  4. 4.
    Eisinger, N., Completeness, Confluence, and Related Properties of Clause Graph Resolution, Dissertation, FB Informatik, Univ. Kaiserslautern (forthcoming 1986).Google Scholar
  5. 5.
    Kowalski, R., A Proof Procedure Using Connection Graphs, JACM, Vol. 22 No.4 (1975), 424–436.CrossRefGoogle Scholar
  6. 6.
    Karl Mark G Raph: The Markgraf Karl Refutation Procedure, Seki-84-08-Kl, FB Inf., Univ.Kaiserslautern.Google Scholar
  7. 7.
    Ohlbach, H.J., Link Inheritance in Abstract Clause Graphs, JAR (forthcoming 1986).Google Scholar
  8. 8.
    Ohlbach, H.J., The Semantic Clause Graph Procedure — A First Overview, (submitted to GWAI-86).Google Scholar
  9. 9.
    Schmidt-Schauss, M. Mechanical Generation of Sorts in Clause Sets, Memo-Seki-85-6-Kl, FB Informatik, Univ. Kaiserslautern (1985).Google Scholar
  10. 10.
    Shostak, R.E., Refutation Graphs, Artificial Intelligence 7 (1976), 51–64.CrossRefGoogle Scholar
  11. 11.
    Siekmann, J., Wrightson, G., Paramodulated Connection Graphs, Acta Informatica (1979)Google Scholar
  12. 12.
    Stickel, M.E., Automated Deduction by Theory Resolution, JAR, Vol.1, No.4 (1985), 333–356.Google Scholar
  13. 13.
    Walther, C., A Many-Sorted Calculus based on Resolution and Paramodulation, Proc. 8th IJCAI, Karlsruhe (1983), 882–891.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • N. Eisinger
    • 1
  • H. J. Ohlbach
    • 1
  1. 1.FB InformatikUniversität KaiserslauternKaiserslauternWest Germany

Personalised recommendations