Advertisement

Classes of first order formulas under various satisfiability definitions

  • H. Kleine Büning
  • Th. Lettmann
Theoretical Issues
Part of the Lecture Notes in Computer Science book series (LNCS, volume 230)

Abstract

In this paper we consider some special satisfiability problems of first order logic. We study effects of a unique name assumption and a domain closure assumption on complexity of satisfiability tests for certain classes of formulas interesting in logic programming or relational database theory. It is shown that the last assumption simplifies the satisfiability problem for first order logic. However for classes of formulas with lower complexity of the unrestricted satisfiability problem no general reduction of complexity can be determined.

Keywords

Conjunctive Normal Form Universal Quantifier Truth Assignment Propositional Formula Satisfiability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Börger: Berechenbarkeit, Komplexität, Logik, Vieweg, 1985Google Scholar
  2. [2]
    M. Garey, D.S. Johnson: Computers and Intractability, Freeman and Company, 1979Google Scholar
  3. [3]
    H. Kleine Büning: Complexity Results for Classes of First-Order Formulas with Identity and Conjunctive Quantificational Form, Forschungsberichte der Universität Karlsruhe, 1985Google Scholar
  4. [4]
    H. Kleine Büning, Th. Lettmann: First-Order Formulas in Conjunctive Quantificational Form, Forschungsberichte der Universität Karlsruhe, 1985Google Scholar
  5. [5]
    A.R. Meyer, L.J. Stockmeyer: Word Problems Requiring Exponential Time, Proc. 5th Ann. ACM Symp. on Theory of Computing, 1973Google Scholar
  6. [6]
    D.A. Plaisted: Complete Problems in the First-Order Predicate Calculus, Journal of Computer and System Sciences, 1984Google Scholar
  7. [7]
    R. Reiter: Towards a Logical Reconstrustion of Relational Database Theory, in On Conceptual Modelling, Ed. Brodie, Mylopoulos, Schmidt Springer VerlagGoogle Scholar
  8. [8]
    T. J. Schäfer: The Complexity of Satisfiability Problems, Proc. 10th Ann. ACM Symp. on Theory of Computing, 1978Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • H. Kleine Büning
    • 1
  • Th. Lettmann
    • 1
  1. 1.Institut für Angewandte Informatik und Formale BeschreibungsverfahrenUniversität Karlsruhe (TH)Karlsruhe

Personalised recommendations