Some relationships between unification, restricted unification, and matching

  • Hans-Jürgen Bürckert
Unification Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 230)


We present restricted T-unification that is unification of terms under a given equational theory T with the restriction that not all variables are allowed to be substituted. Some relationships between restricted T-unification, unrestricted T-unification and T-matching (one-sided T-unification) are established. Our main result is that, in the case of an almost collapse free equational theory the most general restricted unifiers and for certain termpairs the most general matchers are also most general unrestricted unifiers, this does not hold for more general theories. Almost collapse free theories are theories, where only terms starting with projection symbols may collapse (i.e to be T-equal) to variables.


Function Symbol Equational Theory Unification Classification Ground Term Projection Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burris S. & Sankappanavar H.P. [1983]: A Course in Universal Algebra; Springer, New York-Heidelberg-BerlinGoogle Scholar
  2. Bürckert H.-J. [1986]: Some Relationships Between Unification, Restricted Unification, and Matching; SEKI-Report, Universität KaiserslauternGoogle Scholar
  3. Eisinger N. [1981]: Subsumption and Connection Graphs; Proc. IJCAI-81, VancouverGoogle Scholar
  4. Fages F. & Huet G. [1983]: Complete Sets of Unifiers and Matchers in Equational Theories; Proc. Caap-83, Springer Lec.Notes Comp.Sci. 159Google Scholar
  5. Grätzer G. [1979]: Universal Algebra; Springer, New York-Heidelberg-BerlinGoogle Scholar
  6. Herold A. [1983]: Some Basic Notions of First-Order Unification Theory, SEKI-Memo, Univ. KarlsruheGoogle Scholar
  7. Herold A. [1985]: A Combination of Unification Algorithms; SEKI-Memo, Univ. KaiserslauternGoogle Scholar
  8. Huet G. [1976]: Resolution d'Equations dans les Languages d'Ordre 1,2,...,ω, These d'Etat, Univ. Paris VIIIGoogle Scholar
  9. Huet G. & Oppen D.C. [1980]: Equations and Rewrite Rules (Survey); Technical Report, SRI InternationalGoogle Scholar
  10. Kowalski R. [1975]: A Proof Procedure Using Connection Graphs; J. ACM 22,4Google Scholar
  11. Loveland D. [1978]: Automated Theorem Proving; North-Holland, Amsterdam-New York-OxfordGoogle Scholar
  12. Plonka J. [1969]: On Equational Classes of Abstract Algebras Defined by Regular Equations; Fund. Math. LXIVGoogle Scholar
  13. Raph K.M.G. [1984]: The Markgraf Karl Refutation Procedure (MKRP); SEKI-Memo, Univ. KaiserslauternGoogle Scholar
  14. Siekmann J. [1984]: Universal Unification (Survey); Proc. 7th CADE, Springer Lec Notes Comp. Sci. 170Google Scholar
  15. Siekmann J. [1986]: Unification Theory; Proc. 7th ECAI, Brighton, to appearGoogle Scholar
  16. Szabo P. [1982]: Unifikationstheorie Erster Ordnung (in german), Dissertation, Univ. KarlsruheGoogle Scholar
  17. Taylor W. [1979]: Equational Logic (Survey); Houston J. Math. 5Google Scholar
  18. Tiden E. [1985]: Unification in Combination of Theories with Disjoint Sets of Function Symbols, Royal Inst. Techn., Dep. Comp. Sci., StockholmGoogle Scholar
  19. Yelick K. [1985]: Combining Unification Algorithms for Confined Regular Equational Theories; Proc. Rewriting Technics and Applications, Springer Lec Notes Comp. Sci. 202Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Hans-Jürgen Bürckert
    • 1
  1. 1.Fachbereich InformatikUniversität KaiserslauternKaiserslauternW Germany

Personalised recommendations