Advertisement

A remark on antiparticles

  • H. J. Borchers
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 257)

Keywords

Spectrum Condition Factor Representation Local Observable Covariant Representation Vacuum Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.J. Borchers: Local Rings and the Connection of Spin with Statistics C.M.P. 1, 281 (1965)Google Scholar
  2. [2]
    S. Doplicher, R. Haag, and J. Roberts: Local Observables and Particle Statistics C.M.P. 23, 199–230 (1971) C.M.P. 35, 49(1974)Google Scholar
  3. [3]
    D. Buchholz and K. Fredenhagen: Locality and the Structure,of Particle States C.M.P. 84, 1 (1982)Google Scholar
  4. [4]
    K. Fredenhagen: On the Existence of Antiparticles C.M.P. 79, 141 (1981)Google Scholar
  5. [5]
    A.S. Wightman: Recent Achievements of Axiomatic Field Theory Trieste Lectures 1962, Theorem 12Google Scholar
  6. [6]
    H.J. Borchers: Translation Group and Spectrum Condition. C.M.P. 96, 1–13 (1984)Google Scholar
  7. [7]
    D. Olesen and G.K. Pedersen: Derivations of C-Algebras have Semi-Continuous Generators. Pacific J. Math. 53, 563–572 (1974)Google Scholar
  8. [8]
    H.J. Borchers and D. Buchholz: The Energy-Momentum Spectrum of Local Field Theories with Broken Lorentz-Symmetry C.M.P. 97, 169–185 (1985)Google Scholar
  9. [9]
    H.J. Borchers: Locality and Covariance of the Spectrum FIZIKA: V.J. Glaser memorial volume, in printGoogle Scholar
  10. [10]
    H.J. Brehmermann, R. Oehme, and J.G. Taylor: Proof of Dispersion Relation in Quantized Field Theories. Phys. Rev. 109, 2178–2190 (1958)Google Scholar
  11. [11]
    J. Bros, A. Messiah, and R. Stora: A Problem of Analytic Completion related to the Jost-Lehmann-Dyson Formula J. Math. Phys. 2, 639 (1961)Google Scholar
  12. [12]
    F.J. Dyson: Integral Representation of Causal Commutators Phys. Rev. 110, 1460 (1958).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • H. J. Borchers
    • 1
  1. 1.Institut für Theoretische Physikder Universität GöttingenBunsenstr. 9

Personalised recommendations