Why do bosons condense?

  • J. T. Lewis
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 257)


Thermodynamic Limit Large Deviation Principle Particle Number Density Generalize Condensation Boson Condensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Einstein, A.: Quantentheorie des einatomigen idealen Gases, Sitzunber. Preus. Akad. Wiss. 1, 3–14 (1925)Google Scholar
  2. [2]
    Uhlenbeck, G.E.: Thesis, Leyden 1927Google Scholar
  3. [3]
    Kahn, B., Uhlenbeck, G.E.:On the theory of condensation, Physica 5, 399–415 (1938)Google Scholar
  4. [4]
    London, F.: On the Bose-Einstein condensation, Phys. Rev. 54, 947–954 (1938)Google Scholar
  5. [5]
    London, F.: Superfluids, vol. 11. New York: John Wiley and Sons, Inc. 1954Google Scholar
  6. [6]
    Huang, K., Yang, C.N., Luttinger, J.M.: Imperfect Bose gas with hard-sphere interactions, Phys. Rev. 105, 776–784 (1957)Google Scholar
  7. [7]
    Hepp, K., Lieb, E.: Equilibrium statistical mechanics of matter interacting with the quantized radiation field, Phys. Rev. A8, 2517–2525 (1973)Google Scholar
  8. [8]
    van den.Berg, M., Lewis, J.T., Pulé, J.V.: A general theory of Bose-Einstein condensation, DIAS-STP-82-35 (1982)Google Scholar
  9. [9]
    van den Berg, M., Lewis, J.T., Pulé, J.V.: A general theory of Bose-Einstein condensation, Helv. Phys. Acta (in press) (1986)Google Scholar
  10. [10]
    Huang, K.: Statistical Mechanics. New York: John Wiley and Sons, Inc. 1967Google Scholar
  11. [11]
    Ruelle, D.: Statistical Mechanics: Rigorous Results. New York: Benjamin 1969Google Scholar
  12. [12]
    Davies, E.B.: The thermodynamic limit for an imperfect boson gas, Commun. math. Phys. 28, 69–86 (1972)Google Scholar
  13. [13]
    Fannes, M., Verbeure, A.: The imperfect Boson gas, J. Math. Phys. 21, 1809 (1980)Google Scholar
  14. [14]
    Buffet, E., Pulè, J.V.: Fluctuation properties of the imperfect Bose gas, J. Math. Phys. 24, 1608–1616 (1983)Google Scholar
  15. [15]
    van den Berg, M., Lewis, J.T., de Smedt, P.: Condensation in the imperfect boson gas, J. Stat. Phys., 697–707 (1984)Google Scholar
  16. [16]
    Thouless, D.J.: The Quantum-mechanics of Many-body Systems. New York: Academic Press 1961Google Scholar
  17. [17]
    Girardeau, M.: Relationship between systems of impenetrable bosons and fermions in one-dimension, J. Math. Phys. 1, 516–523 (1960)Google Scholar
  18. [18]
    Schultz, T.: Note on the one-dimensional gas of impenetrable point-particle bosons, J. Math. Phys. 4, 666–671 (1963)Google Scholar
  19. [19]
    Pulè, J.V.: Thesis, Oxford, 1972Google Scholar
  20. [20]
    Lewis, J.T.: The free boson gas, Proceedings of the LMS Instructional Conference, Bedford College 1971, Mathematical Problems in Mathematical Physics. New York: Academic Press 1972Google Scholar
  21. [21]
    Cannon, J.T.: Infinite-volume limits of the canonical free Bose gas states on the Weyl algebra, Commun. math. Phys. 29, 89–104 (1973)Google Scholar
  22. [22]
    Lewis, J.T., Pulè, J.V.: The equilibrium states of the free boson gas, Commun. math. Phys. 36, 1–18 (1974)Google Scholar
  23. [23]
    Ziff, R.M., Uhlenbeck, G.E., Kac, M.: The ideal Bose gas revisited, Phys. Rep. C32, 169–248 (1977)Google Scholar
  24. [24]
    van den Berg, M., Lewis, J.T., Pulè, J.V.: The large deviation principle and some models of an interacting boson gas, DIAS-86-(1986)Google Scholar
  25. [25]
    Varadhan, S.R.S.: Asymptotic probabilities and differential equations, Comm. Pure Appl. Math. 19, 261–286 (1966)Google Scholar
  26. [26]
    Varadhan, S.R.S.: Large Deviations and Applications. Philadelphia: Society for Industrial and Applied Mathematics 1984Google Scholar
  27. [27]
    Bahadur, R.R., Zabell, S.L.: Large deviations of the sample mean in general vector spaces, Ann. Prob., 7, 537–621 (1979)Google Scholar
  28. [28]
    Lanford, O.E.: Entropy and equilibrium states in classical statistical mechanics. Lecture Notes in Physics 20, 1–113. Berlin: Springer 1971Google Scholar
  29. [29]
    Azencott, R.: Grandes deviations et applications. Ecole d'Eté de Probabilités de Saint-Flour V111-1978, 1–176, Lecture Notes in Mathematics 774 Berlin: Springer 1980Google Scholar
  30. [30]
    Stroock, D.W.: An Introduction to the Theory of Large Deviations. New York: Springer 1984Google Scholar
  31. [31]
    Ellis, R.: Entropy, Large Deviations and Statistical Mechanics. New York: Springer 1985Google Scholar
  32. [32]
    Lewis, J.T., Pulè, J.V. The equivalence of ensembles in statistical mechanics, Lecture Notes in Mathematics 1095, 25–35 (1984)Google Scholar
  33. [33]
    van den Berg, M., Lewis, J.T., Pulè, J.V.: The large deviation principle and some models of an interacting boson gas, DIAS-86-12 (1986)Google Scholar
  34. [34]
    Lewis, J.T., Pulè, J.V., de Smedt, P.: The Superstability of pair-potentials of positive type. J. Stat. Phys. 35, 381–385 (1984)Google Scholar
  35. [35]
    Lieb, E.: Simplified approach to the ground-state energy of an imperfect Bose gas, Phys. Rev. 130, 2518–2528 (1963)Google Scholar
  36. [36]
    Kac, M.: On the partition function of a one-dimensional gas, Phys. Fluids 2, 8–12 (1959)Google Scholar
  37. [37]
    Baker, G.A.: Certain general order-disorder models in the limit of longrange interactions. Phys. Rev. 126, 2072–2078 (1962)Google Scholar
  38. [38]
    Lebowitz, J.L., Penrose, O.: Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapour transition J. Math. Phys. 7, 98–113 (1966)Google Scholar
  39. [39]
    Gates, D.J., Penrose, O.: The van der Waals' limit for classical systems, III Commun. math. Phys. 17, 194–209 (1970)Google Scholar
  40. [40]
    Lieb, E.: Quantum-mechanical extension of the Lebowitz-Penrose Theorem on the van der Waals' theory J. Math. Phys. 7, 1016–1024 (1966)Google Scholar
  41. [41]
    Lewis, J.T., Pule, J.V., de Smedt, P.: The persistence of boson condensation in the van der Waals' limit, DIAS-STP-83-48 (1983)Google Scholar
  42. [42]
    van den Berg, M., Lewis, J. T., Pule, J.V.: The existence of the pressure in a model of an interacting boson gas. DIAS-STP-86-43 (1986)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. T. Lewis
    • 1
  1. 1.Dublin Institute for Advanced StudiesDublin 4Republic of Ireland

Personalised recommendations