Advertisement

First order phase transitions and perturbation theory

  • J. Bricmont
  • J. Slawny
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 257)

Keywords

Partition Function Ising Model Gibbs State Coexistence Line Periodic Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman, M. and Lieb E. H.: J. Stat. Phys. 24, 279 (1981)Google Scholar
  2. 2.
    Baxter, R. J.: J. Phys. C6, L 445 (1983)Google Scholar
  3. 3.
    Binder, K., Lebowitz, J. L., Phani, M. K. and Kalos, M. H.: Acta Metall. 29, 1655 (1981)Google Scholar
  4. 4.
    Blume, M.: Phys. Rev. 141, 517 (1966)Google Scholar
  5. 5.
    Bricmont, J., El Mellouki, A. and Frohlich, J.: “Random Surfaces in Statistical Mechanics: Roughening, Rounding, Wetting..”. PreprintGoogle Scholar
  6. 6.
    Bricmont, J., Fontaine, J. R. and Lebowitz, J. L.: J. Stat. Phys. 29, 193 (1982)Google Scholar
  7. 7.
    Bricmont, J., Kuroda, K. and Lebowitz, J. L.: J. Stat. Phys. 33, 59 (1983)Google Scholar
  8. 8.
    Bricmont, J., Kuroda, K. and Lebowitz, J. L.: “First Order Phase Transitions in Lattice and Continuous Systems: Extension of the Pirogov-Sinai Theory”, to appear in Commun. Math. Phys..Google Scholar
  9. 9.
    Bricmont, J., Lebowitz, J. L. and Pfister C. E.: Commun. Math. Phys. 78, 117 (1980)Google Scholar
  10. 10.
    Bricmont, J. and Slawny, J.: “Phase Transitions in Systems with a Finite Number of Dominant Ground States”, in preparation.Google Scholar
  11. 11.
    Capel, H. W.: Physica 32, 966 (1966)Google Scholar
  12. 12.
    Coppersmith, S. N.: “The Low Temperature Phase of Stacked Triangular Ising Antiferromagnet”, preprint, Brookhaven National LaboratoryGoogle Scholar
  13. 13.
    Dinaburg, E.I. and Sinai, Ya. G.: Comm un. Math. Phys. 98, 119 (1985)Google Scholar
  14. 14.
    Dinaburg, E. I. and Sinai, Ya. G.: work on the Potts Model, in preparationGoogle Scholar
  15. 15.
    Dobrushin, R. L.: Func. Anal. and Appl. 2, 31, 44 (1968)Google Scholar
  16. 16.
    Dobrushin, R. L.: Theory Prob. and Appl. 17, 582 (1972)Google Scholar
  17. 17.
    Dobrushin, R. L., Kolafa, J. and Shlosman S. B.: “Phase Diagram of the Two-dimensional Ising Antiferromagnet (Computer-assisted Proof)”, preprintGoogle Scholar
  18. 18.
    Dobrushin, R. L. and Zahradnik, M.: “Phase Diagrams for the Continuous Spin Models. Extension of Pirogov-Sinai Theory”, preprintGoogle Scholar
  19. 19.
    Domb, C.: Adv. Phys. 9, 149 (1960)Google Scholar
  20. 20.
    Fisher, M. E. and Selke, W.: Phil. Trans. Roy. Soc. Lond. A302, 1 (1981)Google Scholar
  21. 21.
    Frohlich, J., Israel, R. B., Lieb, E. H. and Simon, B.: Commun. Math. Phys. 62, 1 (1978); J. Stat. Phys. 22 297, 1980.Google Scholar
  22. 22.
    Frohlich, J., Simon,B.,and Spencer,T.: Commun. Math. Phys. 50, 77 (1976)Google Scholar
  23. 23.
    Gallavotti, G., Martin-Lof, A. and Miracle-Sole, S.: In “Statistical Mechanics and Mathematical Problems” (A. Lenard, ed.), pp. 162–204, Springer-Verlag, Berlin, 1973Google Scholar
  24. 24.
    Gerzik, V. M.:Izv. A kad. Nauk SSSR Ser. Mat. 40, 448 (1976)Google Scholar
  25. 25.
    Ginsparg, P., Goldschmidt, Y. Y. and Zuber, J.-B.: Nucl. Phys. B170, 409 (1980)Google Scholar
  26. 26.
    Glimm, J. and Jaffe, A.: “Quantum Physics”, Springer-Verlag, New York, 1981Google Scholar
  27. 27.
    Glimm, J., Jaffe, A. and Spencer, T.: Commun. Math. Phys. 45, 203 (1975); Ann. Phys. 101, 610 (1976); ibid., 631Google Scholar
  28. 28.
    Goldschmidt, Y. Y.: Phys. Rev. B24, 1374 (1981)Google Scholar
  29. 29.
    Gopfert, N. and Mack, G.: Comm un. Math. Phys. 82, 545 (1982)Google Scholar
  30. 30.
    Griffiths, R. B.: In “Statistical Mechanics and Field Theory” (C. De Witt and R. Stora, eds.), Gordon and Breach, New York, 1971Google Scholar
  31. 31.
    Griffiths, R. B.: In “Phase Transitions and Critical Phenomena”, Vol. 1, (C. Domb and M. S. Green, eds.), Academic Press, London and New York, 1972Google Scholar
  32. 32.
    Holsztynski, W. and Slawny, J.: Commun, Math. Phys. 66, 147 (1979)Google Scholar
  33. 33.
    Imbrie, J. Z.: Commun. Math. Phys. 82, 261 (1981); Commun. Math Phys. 83, 305 (1982)Google Scholar
  34. 34.
    Israel, R. B.: Apendix B to “Convexity in the theory of Lattice Gases”, Princeton University Press, Princeton, New Jersey, 1979Google Scholar
  35. 35.
    Kotecky, R. and Shlosman, S. B.: Commun. Math. Phys. 83, 493 (1982)Google Scholar
  36. 36.
    Lanford, O. E.: In “Statistical Mechanics and Mathematical Problems” (A. Lenard, ed.), pp. 1–113, Springer-Verlag, Berlin, 1973Google Scholar
  37. 37.
    Lebowitz, J. L. and Lieb, E. H.: Phys. Lett. 32A, 2 (1972)Google Scholar
  38. 38.
    Lebowitz, J.L. and Martin-Lof, A.: Comm un. Math. Phys. 25, 278 (1972)Google Scholar
  39. 39.
    Lebowitz, J. L. and Penrose, O.: J. Math. Phys. 7, 98 (1966)Google Scholar
  40. 40.
    Minlos, R. A. and Sinai, Ya. G.: Tr. Mosk. Mat. Obshch. 17, 213 (1967); Mat. Sb. 73, 375 (1967); Tr. Mosk. Mat. Obshch. 19, 113 (1968)Google Scholar
  41. 41.
    Peierls, R.: Proc. Cambridge Philos. Soc. 32, 477 (1936)Google Scholar
  42. 42.
    Pirogov, S. A. and Sinai, Ya. G.: Teor. Mat. Fiz. 25, 358 (1975); Teor. Mat. Fiz. 26, 61 (1976)Google Scholar
  43. 43.
    Ruelle, D.: “Statistical Mechanics: Rigorous Results”, Benjamin, New York, 1969Google Scholar
  44. 44.
    Ruelle, D.: Phys. Rev. Lett. 27, 1040 (1971)Google Scholar
  45. 45.
    Ruelle, D.: Commun. Math. Phys. 53, 195 (1977)Google Scholar
  46. 46.
    Seiler, E.: “Gauge Theories as a Problem in Constructive Quantum Field Theory and Statistical Mechanics”, Lecture Notes in Physics, vol. 159, Springer-Verlag, Berlin-Heidelberg-New York, 1982Google Scholar
  47. 47.
    Sinai, Ya. G.: “Theory of Phase Transitions: Rigorous Results”, Pergamon Press, Oxford, 1982Google Scholar
  48. 48.
    Slawny, J.: “Low Temperature Properties of Classical Lattice Systems:Phase Transitions and Phase Diagrams”, to be published in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds., vol. 10, Academic Press, London, 1985.Google Scholar
  49. 49.
    Thompson, C. J.: “Mathematical Statistical Mechanics”, Princeton University Press, Princeton, N. J., 1979.Google Scholar
  50. 50.
    Villain, J. and Bak, P.: J. Physique 42, 657 (1981).Google Scholar
  51. 51.
    Villain, J., Bidaux, R., Carton, J. P. and Conte, R.: J. Physique 41, 1263 (1980).Google Scholar
  52. 52.
    Widom, B. and Rowlison, J. S.: J. Chem. Phys. 52, 1670 (1970)Google Scholar
  53. 53.
    Wu, F. J.: Rev. Mod. Phys. 54, 235 (1982)Google Scholar
  54. 54.
    Zahradnik, M.: Comm un. Math. Phys. 93, 559 (1984)Google Scholar
  55. 55.
    Bortz, A. and Griffiths, R. B.: Commun. Math. Phys. 26, 102 (1972)Google Scholar
  56. 56.
    Gallavotti, G.: Commun. Math. Phys. 22, 103 (1972)Google Scholar
  57. 57.
    Basuev, A. G.: Theor. Math. Phys. 58,171 (1984)Google Scholar
  58. 58.
    Cassandro, M. and Da Fano, A.: Comm un. Math. Phys. 36, 277 (1974)Google Scholar
  59. 59.
    Galeb, F. F.: Tr. Mask. Mat. Obshch. 44, (1982) Engl. Transl.: Trans. Moscow Math. Soc. 2, 111 (1983).Google Scholar
  60. 60.
    Kotecky, R. and Preiss, D.: in preparationGoogle Scholar
  61. 61.
    van der Waals volume: Physica 73 (1974)Google Scholar
  62. 62.
    Baxter, R. J., Enting, I. G. and Tsang, S. K.: J. Stat. Phys. 22, 465 (1980)Google Scholar
  63. 63.
    Lebowitz, J. L., Phani, M. K. and Styer, D. F.: J. Stat. Phys. 38, 413 (1985)Google Scholar
  64. 64.
    Dobrushin, R. L. and Shlosman, S. B.: “The Problem of Translation Invariance of Gibbs States at Low Temaperatures”, Sov. Sc. Rev. Ser. C, vol. 5 (1985)Google Scholar
  65. 65.
    Ruelle, D.: “Thermodynamic Formalism”, Addison-Wesley, Reading, Massachusetts, 1979Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. Bricmont
    • 1
    • 2
  • J. Slawny
    • 1
    • 2
  1. 1.Institut de Physique Theorique, 2, ch. du CyclotronUniversite Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Center for Transport Theory and Mathematical PhysicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations