Integration of rational functions in SAC-2

  • Trevor J. Smedley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


This paper describes the algorithms used in an implementation of rational function integration in SAC-2, and gives a complexity analysis. The routines compute the transcendental part of the integral, expressing it over the extension field of least possible degree.


Rational Function Extension Field Rational Part Minimal Polynomial Splitting Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G E Collins, The Calculation of Multivariate Polynomial Resultants, Journal of the Association for Computing Machinery 18 No. 4(October 1971).Google Scholar
  2. 2.
    C Hermite, Oeuvres de Charles Hermite. 1912.Google Scholar
  3. 3.
    L Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, Journal für reine und angewante Mathematik 92(1882).Google Scholar
  4. 4.
    A Schönhage, Factorization of Univariate Integer Polynomials by Diophantine Approximation and an Improved Basis Reduction Algorithm, Lecture Notes in Computer Science 172(July 1984).Google Scholar
  5. 5.
    T J Smedley, Bounds for Algorithms on Polynomials Over Algebraic Extension Fields, Internal Report, University of Waterloo, (To Appear).Google Scholar
  6. 6.
    B M Trager, Algebraic Factoring and Rational Function Integration, Proc. ACM Symp. on Symbolic and Algebraic Computation, (1976).Google Scholar
  7. 7.
    P Weigel, Factorisierung von Polynomen über Q(α) nach einem verbesserten Algorithmus von Kronecker, Report No. 23/83, Universität Karlsruhe, (1983).Google Scholar
  8. 8.
    D Y Y Yun, Fast Algorithms for Rational Function Integration, Information Processing 77, North Holland Pub., (1977).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Trevor J. Smedley
    • 1
  1. 1.Universität KarlsruheKarlsruhe

Personalised recommendations