Groebner bases for non-commutative polynomial rings

  • Ferdinando Mora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


Polynomial Ring Left Ideal Commutative Case Finite Basis GROEBNER Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A-L.
    J.APEL,W.LASSNER An algorithm for calculations in enveloping fields of Lie Algebras, Proc.of the Conf. on Computer Algebra,Dubna (1985)Google Scholar
  2. BER.
    G.M. BERGMAN The diamond lemma in ring theory, Adv.Math.29(1978),178–218Google Scholar
  3. BUC1.
    B.BUCHBERGER Dissertation,Univ.Innsbruck,1965Google Scholar
  4. BUC2.
    B.BUCHBERGER Gröbner bases: an algorithmic method in polynomial ideal theory, in N.K.BOSE Ed. Recent trends in multidimensional system theory, Reidel (1985)Google Scholar
  5. BUC3.
    B. BUCHBERGER A criterion for detecting unnecessary reductions in the construction of Gröbner bases, Proc.EUROSAM 79, L.N.Comp.Sci. 72 (1979),3–21Google Scholar
  6. GAL.
    A.GALLIGO Some algorithmic questions on ideals of differential operators, Proc. EUROCAL 85, L.N.Comp.Sci.Google Scholar
  7. HIR.
    H. HIRONAKA Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann.Math. 79 (1964),109–326Google Scholar
  8. LAZ.
    D. LAZARD Gröbner bases,Gaussian elimination and resolution of systems of algebraic equations, Proc.EUROCAL 83, L.N.Comp.Sci. 162 (1983),146–156Google Scholar
  9. M-M.
    H.M.MOELLER,F.MORA New constructive methods in classical ideal theory, to appear in J.Alg.Google Scholar
  10. ROB.
    L.ROBBIANO On the theory of graded structures, Report of Max-Planck-Institut, Bonn (1984)Google Scholar
  11. W-B.
    F.WINKLER,B.BUCHBERGER A criterion for eliminating unnecessary reductions in the Knuth-Bendix algorithm, Proc.Coll.Algebra,Combinatorics and Logic in Comp. Sci. (1983), to appear in Coll.Math.Soc.J.BolyaiGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Ferdinando Mora
    • 1
  1. 1.Università di GenovaItaly

Personalised recommendations