Optimal algorithms for finite dimensional simply generated algebras

  • Annemarie Fellmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Alder & V. Strassen: On the algorithmic complexity of associative algebras. Theoret. Comput. Sci. 15 (1981) 201–211.Google Scholar
  2. [2]
    M.F. Atiyah & I.G. Macdonald: Introduction to commutative algebra. London (1969).Google Scholar
  3. [3]
    W. Büchi & M. Clausen: On a Class of Primary Algebras of Minimal Rank. Preprint (Univ. Zürich 1984).Google Scholar
  4. [4]
    C.M. Fiduccia & I. Zalcstein: Algebras having linear multiplicative complexity. J. ACM 24 (1977) 311–331.Google Scholar
  5. [5]
    H.F. de Groote: On varieties of optimal algorithms for the computation of bilinear mappings: I. The isotropy group of a bilinear mapping. Theoret. Comput. Sci. 7 (1978) 1–24.Google Scholar
  6. [6]
    H.F. de Groote: Characterization of division algebras of minimal rank and the structure of their algorithm varieties. SIAM J. Comput. 12 (1983) 101–117.Google Scholar
  7. [7]
    H.F. de Groote & J. Heintz: Commutative algebras of minimal rank. Linear Algebra and its Appl. 55 (1983) 37–68.Google Scholar
  8. [8]
    H.F. de Groote & J. Heintz: A lower bound for the bilinear complexity of some semisimple Lie algebras. in this volume (1985).Google Scholar
  9. [9]
    J. Heintz & J. Morgenstern: On associative algebras of minimal rank. Preprint (Univ. Frankfurt 1985).Google Scholar
  10. [10]
    S. Winograd: On the multiplication in algebraic extension fields. Theoret. Comput. Sci. 8 (1979) 359–377.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Annemarie Fellmann
    • 1
  1. 1.Fachbereich MathematikJ.W. Goethe - UniversitätFrankfurt a.M., F.R.G.

Personalised recommendations