The algorithmic structure of \(\mathfrak{s}\mathfrak{l}(2,k)\)

  • Roland Mirwald
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


Isotropy Group Characteristic Zero Algorithm Variety Abelian Subalgebra Abelian Subalgebras 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. GOTO/F.D. GROSSHANS, Semisimple Lie Algebras, M. Dekker, New York & Basel 1978.Google Scholar
  2. [2]
    H.F. de GROOTE, On varieties of optimal algorithms for the computation of bilinear mappings. I. The isotropy group of a bilinear mapping, Theor. Computer Science 7 (1978), 1–24.Google Scholar
  3. [3]
    H.F. de GROOTE, On varieties of optimal algorithms for the computation of bilinear mappings. II. Optimal algorithms for 2 × 2-matrix multiplication, Theor. Computer Science 7 (1978), 127–148.Google Scholar
  4. [4]
    H.F. de GROOTE, Lectures on the complexity of bilinear problems (to be published).Google Scholar
  5. [5]
    H.F. de GROOTE/J. HEINTZ, A lower bound for the bilinear complexity of some semisimple Lie algebras, in: Proc. of the AAECC-3 Conference (Grenoble 1985), this volume.Google Scholar
  6. [6]
    J.E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, GTM 9, Springer, New York 1972.Google Scholar
  7. [7]
    J.C. LAFON, Complexité d'évaluation de plusieurs formes bilinéaires et des principaus calculs matriciels, Partie B, Université Grenoble 1976.Google Scholar
  8. [8]
    R. MIRWALD, Die algorithmische Struktur der sr(2, k), Master's Thesis, Universität Frankfurt a.M. 1985.Google Scholar
  9. [9]
    V. STRASSEN, Vermeidung von Divisionen, Crelles J. f. reine und angew. Math. 264 (1973), 238–251.Google Scholar
  10. [10]
    S. WINOGRAD, Some bilinear forms whose multiplicative complexity depends on the field of constants, Math. Systems Theory 10 (1977), 169–180.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Roland Mirwald
    • 1
  1. 1.Fachbereich MathematikJ.W. Goethe-UniversitätFrankfurt a.M.

Personalised recommendations