Quantifier elimination for real closed fields

  • W. Böge
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


There exist still many possibilities to essentially reduce the computation time of quantifier elimination for the elementary real algebra. Two are pointed out a) in case of only a few quantified and arbitrary many free variables and b) in case of one or more quantifier blocks of length ≥ 2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACM85]
    Arnon, D.S., Collins, G.E., McCallum, S., “An adjacency algorithm for cylindrical algebraic decompositions of three dimensional space”, Proc. Europ. Conf. on Computer Algebra, Springer-Verlag LNCS 204, 246–261.Google Scholar
  2. [ARN81]
    Arnon, D.S., “Algorithms for the geometry of semi-algebraic sets”, PhD thesis, Univ. Wisconsin, 1981Google Scholar
  3. [ARN85]
    Arnon, D.S., “A cluster-based cylindrical algebraic decomposition algorithm”, Proc. Europ. Conf. on Computer Algebra, Springer-Verlag LNCS 204, 262–269.Google Scholar
  4. [BKR84]
    Ben-Or, M., D. Kozen, and J. Reif, “The complexity of elementary algebra and geometry”, Proc. 16th ACM Symp. on Theory of Computing, May 1984, 457–464. To appear, JCSS.Google Scholar
  5. [COL75]
    Collins, G.E., “Quantifier elimination for real closed fields by cylindric algebraic decomposition”, Proc. 2nd GI Conference on Automata Theory and Formal Languages, Springer-Verlag LNCS 35, Berlin, 1975, 134–183.Google Scholar
  6. [GEB]
    Gebauer, R.G., to appearGoogle Scholar
  7. [GrV86]
    Grigorev, D.Y. and Vorobjov, N.N.(Jr.), “Solving systems of polynomial inequalities in exponential time”, J. Symb. Comp., 1986, to appear.Google Scholar
  8. [HOL74]
    Holthusen, C., “Vereinfachungen für Tarski's Entscheidungsverfahren der Elementaren Reellen Algebra.” Diplomarbeit, Univ. Heidelberg, 1974.Google Scholar
  9. [KoY85]
    Kozen, D. and Yap, C.K., “Algebraic cell decomposition in NC”, Symp. on Found. of Comp. Sc., 1985Google Scholar
  10. [McC85]
    McCallum, S., “An improved projection operation for cylindrical algeraic decomposition”, PhD thesis, Univ. of Wiscounsin, Madison, 1985.Google Scholar
  11. [Ros79]
    Rosenkranz, G. “Eine dem kombinierten Vorzeichenverhalten zweier Polynome äquivalente quantorenfreie Formel.” Diplomarbeit, Univ. Heidelberg, 1979Google Scholar
  12. [TAR48]
    Tarski, A. “A decision method for elementary algebra and geometry”, Univ. of California Press, 1948; 2nd edition, 1951.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. Böge
    • 1
  1. 1.Institut für Angewandte MathematikUniversität HeidelbergGermany

Personalised recommendations