Some group presentations and enforcing the associative law

  • M. F. Newman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Michael Aschbacher (1981), “The classification of the finite simple groups”, Math. Intelligencer 3, 59–65.Google Scholar
  2. Judith A. Ascione, George Havas and C.R. Leedham-Green (1977), “A computer aided classification of certain groups of prime power order”, Bull. Austral. Math. Soc. 17, 257–274, 317–319, Microfiche supplement.Google Scholar
  3. J.J. Cannon (to appear), A language for group theory, Lecture Notes in Computer Science, Springer-Verlag.Google Scholar
  4. A.H. Clifford and G.B. Preston (1961), The algebraic theory of semigroups, vol. 1, Amer. Math. Soc.Google Scholar
  5. Volkmar Felsch (1980), “The computation of a counterexample to the class-breadth conjecture for p-groups”, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 503–506 (Proc. Sympos. Pure Math., 37, Amer. Math. Soc.).Google Scholar
  6. George Havas and M.F. Newman (1980), “Application of computers to questions like those of Burnside”, Burnside Groups (Proc. Workshop, Univ. Bielefeld, Bielefeld, 1977), pp. 211–230 (Lecture Notes in Mathematics, 806. Springer Verlag).Google Scholar
  7. George Havas and Tim Nicholson (1976), “Collection”, SYMSAC '76 (Proc. ACM Sympos. on Symbolic and Algebraic Computation, Yorktown Heights, New York, 1976), pp. 9–14 (Association for Computing Machinery).Google Scholar
  8. Rodney James and John Cannon (1969), “Computation of isomorphism classes of p-groups”, Math. Comp. 23, 135–140.Google Scholar
  9. M.F. Newman (1976), “Calculating presentations for certain kinds of quotient groups”, SYMSAC '76 (Proc. ACM Sympos. on Symbolic and Algebraic Computation, Yorktown Heights, New York, 1976), pp. 2–8 (Association for Computing Machinery).Google Scholar
  10. Charles C. Sims (1965), “Enumerating p-groups”, Proc. London Math. Soc. (3) 15, 151–166.Google Scholar
  11. L. Sylow (1872), “Théorèmes sur les groupes de substitutions”, Math. Ann. 5, 584–594.Google Scholar
  12. M.R. Vaughan-Lee (1984), “An aspect of the nilpotent quotient algorithm”, Computational Group Theory (proc. L.M.S. Symp., Durham, 1982) pp. 75–83 (Academic Press).Google Scholar
  13. M.R. Vaughan-Lee (1985), “The restricted Burnside problem”, Bull. London Math. Soc. 17, 113–133.Google Scholar
  14. J.W. Wamsley (1974), “Computation in nilpotent groups (theory)”, Proc. Second Internat. Conf. Theory of Groups (Canberra, 1973), pp. 691–700 (Lecture Notes in Mathematics, 372. Springer-Verlag).Google Scholar
  15. H. Zassenhaus (1968), “What makes a loop a group?”, Amer. Math. Monthly 75, 139–142.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • M. F. Newman
    • 1
  1. 1.Department of Mathematics, Institute of Advanced StudiesAustralian National UniversityCanberraAustralia

Personalised recommendations