On computational complexity of some algebraic curves over finite fields

  • D. Le Brigand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


Finite Field Plane Curve Algebraic Curf Exceptional Divisor Polynomial Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [G1]
    GOPPA: “Algebraico-geometric codes”; Math. USSR Izvestiya, 21, pp. 75–91 (1983).Google Scholar
  2. [G2]
    GOPPA: “Codes and Information”; Russian Math. Surveys, pp. 87–141 (1984).Google Scholar
  3. [I]
    IHARA: “Some remarks on the number of rational points over finite fields”; J. Fac. Sci. Univ. Tokyo, Sec IA 28, no 3, pp. 721–724 (1982).Google Scholar
  4. [K,T,V]
    KATSMAN, TSFASMAN, VLADUT: “Modular codes with a polynomial construction”; IEEE Transf. Inf. Theory, 30, pp. 353–355 (1984).Google Scholar
  5. [M,V]
    MANIN, VLADUT: “Codes linéaires et courbes modulaires”; Publications de l'Université Pierre et Marie Curie no 72, (Juin 1985) (traduction en français).Google Scholar
  6. [S1]
    SERRE: “Nombre de points des courbes algébriques sur \(\mathbb{F}_q\) q” Sem. th. Nombres, Bordeaux, exp. 22 (1982–83).Google Scholar
  7. [S2]
    SERRE: Résumé du cours de l'année 1984: Annuaire du Collège de France (1985).Google Scholar
  8. [T,V,Z]
    TSFASMAN, VLADUT, ZINK: “Modular Curves, Shimura curves and Goppa Codes, better than Varshamov-Gilbert”; Math. Nachr. 109, pp. 21–28 (1982).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • D. Le Brigand
    • 1
  1. 1.Université Pierre et Marie Curie (Paris VI)Paris Cedex 05

Personalised recommendations