A lower bound for the bilinear complexity of some semisimple lie algebras

  • Hans F. de Groote
  • Joos Heintz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


Division Algebra Bilinear Mapping Cartan Subalgebra Minimal Rank Abelian Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Alder & V. Strassen: On the algorithmic complexity of associative algebras. Theoret. Comput. Sci. 15 (1981) 201–211.Google Scholar
  2. [2]
    M.F. Atiyah & I.G. Macdonald: Introduction to commutative algebra. London (1969).Google Scholar
  3. [3]
    W. Büchi & M. Clausen: On a Class of Primary Algebras of Minimal Rank. Preprint (Univ. Zürich 1984).Google Scholar
  4. [4]
    C.M. Fiduccia & I. Zalcstein: Algebras having linear multiplicative complexity. J. ACM 24 (1977) 311–331.Google Scholar
  5. [5]
    H.F. de Groote: On varieties of optimal algorithms for the computation of bilinear mappings: I. The isotorpy group of a bilinear mapping. Theoret. Comput. Sci. 7 (1978) 1–24.Google Scholar
  6. [6]
    H.F. de Groote: Characterization of division algebras of minimal rank and the structure of their algorithm varieties. SIAM J. Comput. 12 (1983) 101–117.Google Scholar
  7. [7]
    H.F. de Groote & J. Heintz: Commutative algebras of minimal rank. Linear Algebra and its Appl. 55 (1983) 37–68.Google Scholar
  8. [8]
    H.F. de Groote & J. Heintz: A lower bound for the bilinear complexity of some semisimple Lie algebras. in this volume (1985).Google Scholar
  9. [9]
    J. Heintz & J. Morgenstern: On associative algebras of minimal rank. Preprint (Univ. Frankfurt 1985).Google Scholar
  10. [10]
    S. Winograd: On the multiplication in algebraic extension fields. Theoret. Comput. Sci. 8 (1979) 359–377.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Hans F. de Groote
    • 1
  • Joos Heintz
    • 1
    • 2
  1. 1.Mathematisches Seminar J.W. GoetheUniversität Frankfurt a.M.Germany
  2. 2.Instituto Argentino de MatemáticasBuenos Aires

Personalised recommendations