Automorphisms and isometries of some modular algebras

  • M. Ventou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


Two explicitations for the primary decomposition of the algebra A=GFq[X1,...,Xn]/(t1(X1),...,tn(Xn)) are used to determine the group of automorphisms of A. In the particular case where A is an algebra of a finite abelian group, we give also its group of isometries.


Wreath Product Cyclic Code Primary Decomposition Primitive Idempotent Finite Abelian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Charpin “Codes idéaux de certaines algèbres modulaires” Thèse eeme cycle PARIS VII (1982)Google Scholar
  2. [2]
    A. Poli “Codes dans certaines algèbres modulaires” Thèse de doct. d'etat Univ. P. Sabatier TOULOUSE (1978)Google Scholar
  3. [3]
    A. Poli and J.A. Thiong Ly “Automorphisms of principal nilpotent self-dual codes in certain modular algebra” Discrete Maths. 56, 265–273 (1985)Google Scholar
  4. [4]
    A. Poli “Idéaux de Fq[X1,...,Xn]/(X1p−1,...,Xnp−1) stables sous le groupe d'automorphismes isométriques” C.R. Acad. Sciences t 195, A (1980)Google Scholar
  5. [5]
    A. Poli “Idéaux principaux nilpotents de dimension maximale dans l'algèbre Fq[G] d'un groupe abélien fini” Communications in Algebra, 12(4), 391–401 (1984)Google Scholar
  6. [6]
    M. Ventou “Contribution à l'étude des codes correcteurs polynomiaux” Thèse 3eme cycle Univ. P. Sabatier TOULOUSE (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • M. Ventou
    • 1
  1. 1.A.A.E.C.C. L.S.I. LabPaul Sabatier UniversityToulouse CedexFrance

Personalised recommendations