Self-dual codes 2n circulant over Fq (q=2r)

  • A. Poli
  • C. Rigoni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


We give a constructive characterization of all self dual 2n circulant codes over F2r. This construction generalizes those of F. J. MacWilliams [3], and G.F.M. Beenker [1]. Our method is original. We also give the number of these codes, as well as an outline of an algorithm to construct them. At last, we give several codes we have obtained by software at AAECC Lab.


Generator Matrix Primitive Idempotent Circulant Matrice Involutive Automorphism Binary Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.F. Beenker “On double circulant codes” T.H. Report 80, WSK 04 July 1980Google Scholar
  2. [2]
    M. Karlin “New binary coding results by circulants” IEEE trans. info. Theory, 15, (1969), 797–802Google Scholar
  3. [2′]
    J.S. Leon,J.M. Masley,V. Pless “On weights in duadic codes” Abstract of papers, IEEE june 24–28, (1985), Brighton, U.K.Google Scholar
  4. [3]
    F.J. MacWilliams “Orthogonal circulant matrices over finite fields” J. of Comb. Theory, 10, 1971, 1–17Google Scholar
  5. [4]
    F.J. MacWilliams,N.J.A. Sloane “The theory of error correcting codes” North Holland Mathematic Library, vol. 16, 1977Google Scholar
  6. [5]
    A. Poli “Codes dans certaines algèbres modulaires” Thèse d'état, Univ. P. Sabatier, Toulouse, FRANCE, 1978Google Scholar
  7. [6]
    A. Poli “Idéaux principaux nilpotents de dimension maximale dans l'algèbre Fq[G] d'un groupe abélien” Com. in Algebra, vol. 12, no 3 et 4, (1984), 391–401Google Scholar
  8. [7]
    A. Poli “Construction of primitive idempotents for n variable codes” Acts of AAECC-2 Coll., Toulouse 1984, (submitted for p. Spring. Ver.)Google Scholar
  9. [8]
    M. Ventou “Contribution à l'étude des codes polynomiaux” Thèse de 3ème cycle, Univ. P. Sabatier, Toulouse, FRANCE, 1984Google Scholar
  10. [9]
    M. Ventou, C. Rigoni “Self dual doubly circulant codes” Discrete Math., 56 vol. 1,2 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. Poli
    • 1
  • C. Rigoni
    • 1
  1. 1.AAECC Lab.Univ. P. SabatierToulouseFrance

Personalised recommendations