Advertisement

On s-sum-sets and projective codes

  • Mercè Griera
  • Josep Rifà
  • Llorenç Huguet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)

Abstract

We introduce and characterize s-sum-sets which are a natural extension of partial-difference-sets and triple-sum-sets. We show that if Ω is the set of coordinate forms of C(n,k) and if X=F*Ω is an s-sum-set then C(n,k) has not more than three non-zero distinct weights.

Keywords

Linear Code Coordinate Form Adjacency Matrice Injective Morphism Elementary Abelian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    CAMION P. “Difference sets in Elementary Abelian Groups”. Les Presses de l'Université de Montréal, Montréal (1979).Google Scholar
  2. (2).
    COURTEAU B. and WOLFMANN J. “On triple-sum-sets and two or three weights codes”. Discrete Math. 50 (1984).Google Scholar
  3. (3).
    GRIERA M. “Esquemes d'Associació: aplicació a Teoria de codis”. These: Universitat Autònoma de Barcelona (1984).Google Scholar
  4. (4).
    SZEGO G. “Orthogonal Polynomials”. Amer. Math. Soc. New York. Colloquium Publications, vol XXIII. (1959).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Mercè Griera
    • 1
  • Josep Rifà
    • 1
  • Llorenç Huguet
    • 1
  1. 1.Departament d'Informàtica, Facultat de CiènciesUniversitat Autònoma de Barcelona, BellaterraBarcelonaEspaña

Personalised recommendations