Advertisement

Numerical experiments related to the covering radius of some first order Reed-Muller codes

  • J. Constantin
  • B. Courteau
  • J. Wolfmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)

Abstract

We have done some numerical experiments to find large coset leaders for the first order Reed-Muller codes RM(m) of length 2m for odd m,m ≥ 9, by using some matrix groups acting on the field GF(2m) viewed as a GF(2)-vector space. The coset leaders so obtained are characteristic functions of subsets of GF(2m) that are union of orbits under the considered group and often have interesting combinatorial properties generalizing difference sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Rothaus, O., On Bent Functions, J. Combinatorial Theory, Ser. A, vol. 20, 300–305, 1976.Google Scholar
  2. [2]
    Helleseth T., Klove T. and Mykkeltveit J., On the covering radius of binary codes, IEEE Trans. Inform. Theory, vol IT-24, 627–628, sept. 1978.Google Scholar
  3. [3]
    Berlekamp E.R. and Welch L.R., Weight distributions of the coset of the (32,6) Reed-Muller code, IEEE Trans. Inform. Theory, vol. IT-18, 203–207, jan. 1972.Google Scholar
  4. [4]
    Mykkeltveit J., The covering radius of the (128,8) Reed-Muller code is 56, IEEE Trans. Inform. Theory, vol IT-26, 359–362, May 1980.Google Scholar
  5. [5]
    Patterson N.J. and Wiedemann D.H., The covering radius of the (215, 16) Reed-Muller code is at least 16276, IEEE Trans. Inform. Theory, vol. IT-29, 354–356, 1983.Google Scholar
  6. [6]
    Courteau B. and Wolfmann J., On triple-sum-sets and two or three weights codes, Discrete Math. 50 (1984) 179–191.Google Scholar
  7. [7]
    Dillon J.F., Elementary Hadamard difference sets, Ph. D, Thesis, Maryland University, 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. Constantin
    • 1
    • 2
  • B. Courteau
    • 1
    • 2
  • J. Wolfmann
    • 1
    • 2
  1. 1.Université de SherbrookeSherbrookeCanada
  2. 2.G.E.C.T., Université de Toulon et du VarLa GardeFrance

Personalised recommendations