Advertisement

On computing the performance probabilities of Reed-Solomon codes

  • Sylvia Jennings
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. R. Berlekamp, Algebraic Coding Theory, Aegean Park Press 1984Google Scholar
  2. [2]
    G. D. Forney, Concatenated Codes, MIT Press, 1966Google Scholar
  3. [3]
    T. Kasami & S. Lin, “On the probability of undetected error for the maximum distance separable codes”, IEEE Trans. Commun., vol.COM-32, pp998–1006, Sept.1984.Google Scholar
  4. [4]
    T. Klove, “The probability of undetected error when a code is used for error correction and detection”, IEEE Trans. Inform. Theory, vol.IT-30, pp388–392, March 1984.Google Scholar
  5. [5]
    S.K. Leung-Yan-Cheong, E.R. Barnes & D.U. Friedman, “Some properties of undetected error probability of linear codes”, IEEE Trans. Inform. Theory, vol IT-25, p110–112, Jan.1979.Google Scholar
  6. [6]
    F. J. MacWilliams & N. J. A. Sloane, The Theory of Error Correcting codes, North Holland 1977Google Scholar
  7. [7]
    Z. McC. Huntoon & A.M. Michelson, “On the computation of the probability of post-decoding error events for block codes, IEEE Trans. Inform. Theory, vol.IT-23, pp399–403, May 1977.Google Scholar
  8. [8]
    P.J. Trafton, “Performance of Reed-Solomon codes on a symmetric erasure channel”, Proc. IEEE Int. Conf. Commun., pp18.1–18.5, 1970.Google Scholar
  9. [9]
    J.K. Wolf, A.M. Michelson & A.H. Levesque, “On the probability of undetected error for linear block codes”, IEEE Trans. Commun., vol. COM-30, pp 317–324, Feb 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Sylvia Jennings
    • 1
  1. 1.Racal Research LtdWorton Drive Worton Grange Industrial EstateReading

Personalised recommendations