Advertisement

A minimum system of generators for extended cyclic codes which are invariant under the affine group

  • P. Charpin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)

Abstract

Cyclic codes which are invariant under the affine group are here described in a group algebra. A minimum system of generators for the extended codes is obtained from the zeros set of the cyclic code. We characterize thus some extended BCH-codes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.F. ASSMUS, H.F. MATTSON & R.J. TURYN — On the Peterson and al. affine-invariance theorem — Report AFCRL 67-0365, Air Force Cambridge Res. Labs, Bedford, Mass., June 1967.Google Scholar
  2. [2]
    P. CAMION — Linear codes with given automorphism groups — Discrete Mathematics 3 (1972) 33–45.Google Scholar
  3. [3]
    P. CHARPIN — Codes idéaux de certaines algèbres modulaires Thèse de 3ième cycle, Université de Paris VII (1982).Google Scholar
  4. [4]
    P. CHARPIN — The extended Reed-Solomon codes considered as ideals of a modular algebra — Annals of Discrete Mathematics. 17 (1983) 171–176.Google Scholar
  5. [5]
    P. CHARPIN — Codes cycliques étendus et idéaux principaux d'une algèbre modulaire — C.R.A.S. Paris, t.295, serie I p. 313–315, September 1982.Google Scholar
  6. [6]
    P. CHARPIN — A description of some extended cyclic codes with application to Reed-Solomon codes. Discrete Mathematics, to appear.Google Scholar
  7. [7]
    T. KASAMI, S. LIN et W.W. PETERSON — Some results of cyclic codes which are invariant under the affine group and their applications. Info. and Control — vol. 11, p. 475–496 (1967).Google Scholar
  8. [8]
    F. LAUBIE — Codes idéaux de certaines algèbres modulaires et ramification — To appear.Google Scholar
  9. [9]
    F.J. MAC WILLIAMS et N.J.A. SLOANE — The theory of error correcting codes — North Holland (1977).Google Scholar
  10. [10]
    O. PAPINI — Etude de techniques de décodage par permutation. Thèse de 3ième cycle, Univ. de Toulon, France, 1984.Google Scholar
  11. [11]
    W.W. PETERSON — Error Correcting codes. Wiley, New-York, 1961.Google Scholar
  12. [12]
    J.H. VAN LINT: Coding theory. Springer Verlag, New-York (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. Charpin
    • 1
  1. 1.Institut de Programmation et LITPUniversité Paris VIParis

Personalised recommendations