On the arithmetics of Galoisfields and the like

Algebraic questions arising in the design of secure communication systems
  • Thomas Beth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 229)


Finite Field Normal Basis VLSI Implementation Permutation Network Irreducible Monic Polynomial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

V. References

  1. /1/.
    Beth, T.: Verfahren der schnellen Fourier-Transformation, Teubner, Stuttgart, 1984Google Scholar
  2. /2/.
    Brickell, E.: A Fast Modular Multiplication Algorithm with Applications TO Two-Key-Cryptography, in: Advances in Cryptology, Proc. Crypto '82, Plenum Press, New York (1983)Google Scholar
  3. /3/.
    Conway, J.H.: A Tabulation of Some Information Concerning Finite Fields in: Churchhouse/Herz (eds.): Computers in Mathematical Research, North Holland (1968)Google Scholar
  4. /4/.
    v.d. Waerden, B.L.: Algebra, HTB, Springer, Heidelberg (1968)Google Scholar
  5. /5/.
    Jacobson, N.: Basic Algebra II, Freeman, San Francisco (1980)Google Scholar
  6. /6/.
    Beth, T.: Algebraic and Symbolic Computation in Digital Signal Processing, Coding and Cryptography, in: EUROCAL '85, LNCS 203, Springer, Heidelberg (1985)Google Scholar
  7. /7/.
    Berlekamp, E.R.: Algebraic Coding Theory, McGraw-Hill, New York (1968)Google Scholar
  8. /8/.
    Nussbaumer, H.J.: Fast Fourier Transform and Convolution Algorithms, Springer, Heidelberg (1981)Google Scholar
  9. /9/.
    Lüneburg, H.: Vorlesungen über Algebra, Manuskript, Kaiserslautern 1981–1984Google Scholar
  10. /10/.
    Massey, J.L., Omura, J.K.: Computational Method and Apparatus for Finite Field Arithmetic, US patent application (1981)Google Scholar
  11. /11/.
    Wang, C.C. et al.: VLSI Architectures for Computing Multiplications and Inverses in GF(2m), IEEE Transactions on Computers, C-34, No.8, 709–717, August 1985Google Scholar
  12. /12/.
    Beth, T., Fumy, W., Mühlfeld, R.: Zur Algebraischen Diskreten Fourier-Transformation, Arch. Math. 40, 238–244 (1983)Google Scholar
  13. /13/.
    Berlekamp, E.R.: Bit-Serial Reed-Soloman-Encoders, preprint, Cyclotomics Inc. 1983Google Scholar
  14. /14/.
    Niederreiter, H.; Lidl, R.: Finite Fields, Addison-Wesley, Reading, Mass. (1983)Google Scholar
  15. /15/.
    Fumy, W.: Über orthogonale Transformationen und fehler-korrigierende Codes, Dissertation, Erlangen 1985Google Scholar
  16. /16/.
    MacWilliams, F.J.; Sloane, N.J.H.: The Theory of Error-Correcting Codes, North-Holland (1977)Google Scholar
  17. /17/.
    Beth, T.: Generalising the Discrete Fourier-Transform, Discrete Math. 56, 95–100 (1985)Google Scholar
  18. /18/.
    Gollmann, D.: Dual-Basis Representations, manuscript, Karlsruhe 1985Google Scholar
  19. /19/.
    Knuth, D.E.: Seminumerical Algorithms, Addison-Wesley, Reading, Mass. (1981)Google Scholar
  20. /20/.
    Diffie, W.; Hellmann, M.E.: New Directions in Cryptography, IEEE Trans.Inf. Theory, IT-22 644–654 (1976)Google Scholar
  21. /21/.
    Beth, T.; Cook, B.M.; Gollmann, D.: Fast Exponentiators in VLSI, manuscript, Karlsruhe 1985Google Scholar
  22. /22/.
    Catt, I.: Wafer-scale Integration, Wireless World, 57–59, July 1981Google Scholar
  23. /23/.
    Lüneburg, H.: Galoisfelder, Kreisteilungskörper und Schiebe-registerfolgen, Bibl. Institut, Mannheim (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Thomas Beth
    • 1
    • 2
  1. 1.Royal Holloway CollegeUniversity of LondonUK
  2. 2.Universität KarlsruheGermany

Personalised recommendations