Manipulation of recurrence relations in computer algebra

  • Jacques Calmet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 228)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Calmet and M. Bergman. Some Design Principles of a New System for Algebraic and Symbolic Manipulations. These proceedings.Google Scholar
  2. 2.
    E.L. Lafferty. Hypergeometric Function Reduction — An Adventure in Pattern Matching. Proc. 1979 MACSYMA User's Conference. MIT Lab. Pub., 465–481.Google Scholar
  3. 3.
    R.W. Gosper Jr., Computer-assisted Strip Mining in Abandoned Ore Fields of the 19-th Century Mathematics. Talk at the Conference on Computer Algebra as a Tol for Research in Mathematics and Physics. New York, April 5–6, 1984.Google Scholar
  4. 4.
    J. Ivie.Some MACSYMA Programs for Solving Difference Equations. Proc. 1977 MACSYMA User's Conference. MIT Lab Pub.Google Scholar
  5. 5.
    R.W. Gosper Jr., Indefinite Hypergeometric Sums. Proc. 1977 MACSYMA User's Conference. MIT Lab Pub.Google Scholar
  6. 6.
    P. Verbaeten. The Automatic Construction of Pure Recurrence Relations. ACM-SIGSAM Bulletin 8, 96–98, 1974.Google Scholar
  7. 7.
    J. Calmet and I Cohen. Symbolic Manipulation of RR: an Approach to the Manipulation of Special Functions. In The Second RIKEN Int. Symp. on Symbolic and Algebraic Computation by Computers. Ed. N. Inada and T. Soma. World Scientific, 55–65, 1985.Google Scholar
  8. 8.
    C. Brezinski. Accélération de la convergence en Analyse Numérique. Lecture Notes in Math. 584, Springer-Verlag, 1977.Google Scholar
  9. 9.
    N.J.A. Sloane. A Handbook of Integer Sequences. Academic Press, N.Y., 1973.Google Scholar
  10. 10.
    D. Jarden. Recurring Sequences. Riveon Lematematika, Jerusalem, 1966.Google Scholar
  11. 11.
    G. Szegö. Orthogonal Polynomials. AMS Colloquium Pub. 23, 1939.Google Scholar
  12. 12.
    L.Ya. Geronimus. Orthogonal Polynomials. Consultant Bureau, N.Y., 1966.Google Scholar
  13. 13.
    A. Erdélyi et al.. Higher Transcendental Functions. Bateman Manuscript Project, vol. I, II. McGraw-Hill, N.Y., 1953.Google Scholar
  14. 14.
    R.A. Askey. Orthogonal Polynomials and Special Functions. Proc. Regional Conf. on Applied Math., SIAM, 1975.Google Scholar
  15. 15.
    E.T. Whittaker and G.N. Watson. A Course in Modern Analysis. 4th ed., Cambridge Univ. Press, 1952.Google Scholar
  16. 16.
    D. Bessis et al.. Orthogonal Polynomial on a Family .... Lett. Math. Phys. 6, 123–140, 1982.Google Scholar
  17. 17.
    W. Gautschi. Talk at the Journal CAM Conference. Leuven, July 1984. Proceedings to appear.Google Scholar
  18. 18.
    S.O. Rice. Some properties of3F2(−n, n+1, ς;1, p;v). Duke Math. J. 6, 108–119, 1940.Google Scholar
  19. 19.
    H. Bateman. Two Systems of Polynomials for the Solution of Laplace's Integral Equation. Duke Math. J. 2, 559–577, 1936.Google Scholar
  20. 20.
    L.J. Slater. Generalized Hypergeometric Functions. Cambridge Univ. Press, 1966.Google Scholar
  21. 21.
    H. Buchholz. The Confluent Hypergeometric Function. Springer Tracts in Natural Philosophy 15, 1969.Google Scholar
  22. 22.
    Sis. M.C. Fasenmyer. A Note on Pure Recurrence Relations. Am. Math. Monthly 56, 14–17, 1949.Google Scholar
  23. 23.
    P. Verbaeten. Recurrence Formulae for Linear Hypergeometric Functions. Rep. TW 35, Katholieke Univ. Leuven, 1977.Google Scholar
  24. 24.
    A. Petrossi and R.M. Burstall. Deriving Efficient Algorithms .... Acta Informatica 18, 181–206, 1982.CrossRefGoogle Scholar
  25. 25.
    G.S. Lueker. Some Techniques for Solving RR. ACM Comp. Surv. 12, 419–436, 1980.Google Scholar
  26. 26.
    W. Gautschi. Computational Methods in Special Functions — A Survey. In Theory and Applications of Special Functions. Ed. R.A. Askey. Academic Press. 1–98, 1975.Google Scholar
  27. 27.
    C.L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, N.Y., 1968.Google Scholar
  28. 28.
    H.T. Kung. The Structure of Parallel Algorithms. Advances in Computer 19, 65–112, 1980.Google Scholar
  29. 29.
    E. Papon. Algorithmes de détection de relations de récurrences .... Thèse de 3ième Cycle. Univ. Paris-Sud Orsay, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Jacques Calmet
    • 1
  1. 1.LIFIAGrenobleFrance

Personalised recommendations