Advertisement

Distance — transitive graphs and the problem of maximal subgroups of symmetric groups

  • A. Astie-Vidal
  • J. Chifflet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 228)

Abstract

We give a necessary and sufficient condition for the automorphism group of a distance-transitive graph to be a maximal unitransitive subgroup of the symmetric group (theorem 1). Then we use the necessary condition of theorem 1 to determine the automorphism groups of a class of graphs (theorem 2). After that, we use the sufficient condition of theorem 1 to determine a class of maximal unitransitive subgroups of the symmetric group Smd.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referneces

  1. (1).
    -A. ASTIE-VIDAL Sur certains groupes d'automorphismes de graphes et d'hypergraphes. Thèse Université de Toulouse (Juin 1976).Google Scholar
  2. (2).
    -A. ASTIE-VIDAL Groupes d'automorphismes des graphes d'intersection aux bases d'un matroïde. Coll. Math. discretes: codes et hypergraphes. Bruxelles 1978. Cahiers C.E.R.O. 20.3-4 — 1978Google Scholar
  3. (3).
    -A. ASTIE-VIDAL Factor groups of the automorphism group of a matroid basis graph with respect to the automorphism group of the matroid. Discrete maths 32 (1980) — 217–224.Google Scholar
  4. (4).
    -A. ASTIE-VIDAL The automorphism group of a matroid. Annals of discrete maths 9 (1980) — 205–216.Google Scholar
  5. (5).
    -P. BONNEAUD Thèse — Paris (1984).Google Scholar
  6. (6).
    -J. CHIFFLET Schémas d'association et groupes d'automorphismes de graphes et hypergraphes. Thèse de 3e cycle — Toulouse (mars 1984)Google Scholar
  7. (7).
    -H. ENOMOTO Characterization of families of finite permutation groups by the subdegrees I. J. Fac. Sciences University of Tokio, Ia. Vol. 19 No 1, (129–135) — (1972).Google Scholar
  8. (8).
    -H. ENOMOTO Characterization of families of finite permutation groups by the subdegrees II. J. Fac. Sciences, University of Tokio, Ia, Vol. 19 No 1 (1–11) — (1973).Google Scholar
  9. (9).
    E. HALBERSTADT On certain maximal subgroups of symmetric or alternating groups, Math. Z, 151 — 117–125 (1976).Google Scholar
  10. (10).
    L.A. KALOUJNINE, N.H. KLIN On certain maximal subgroups of symmetric or alternating groups. Math. U.S.S.R. Sbornik, vol. 16, N 1 (1972).Google Scholar
  11. (11).
    J. SKALBA On the maximality of Sn in \(S_{(\begin{array}{*{20}c}n \\k \\\end{array} )}\). J. of algebra 75, 158–174. (1982).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. Astie-Vidal
    • 1
  • J. Chifflet
    • 1
  1. 1.Laboratoire MLADUniversité Paul SabatierToulouse

Personalised recommendations