Advertisement

Designs arising from symplectic geometry

  • Lucien Bénéteau
  • Jacqueline Lacaze
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 228)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    L. BENETEAU: Topics about Moufang loops and Hall triple systems, Simon Stevin 54(1980) 107–124.Google Scholar
  2. [2]
    L. BENETEAU: Une classe particulière de matroides parfaits, in "Combinatorics 79", Annals of Discrete Math. 8 (1980) 229–232.Google Scholar
  3. [3]
    L. BENETEAU: Les Systèmes Triples de Hall de dimension 4, European J. Combinatorics (1981) 2, 205–212.Google Scholar
  4. [4]
    L. BENETEAU: Hall Triple systems and related topics. Proc. Interna. Conf. on Combinatorial Geometries and their applications, 1981; Annals of Discrete Math. 18 (1983) 55–60.Google Scholar
  5. [5]
    G. BOL: Gewebe und Gruppen, Math. Ann. 114 (1937) 414–431; Zbl. 16, 226.Google Scholar
  6. [6]
    Marshall HALL Jr.: Automorphisms of Steiner Triple systems, IBM J. Res. Develop. (1960), 406–472. MR 23A#1282; Zbl.100, p.18.Google Scholar
  7. [7]
    Marshall HALL Jr.: Group theory and block designs, in Proc. Intern. Conf. on the Theory of Groups, Camberra 1965, Gordon and Breach, New-York, MR 36 Zbl. 323.2011.Google Scholar
  8. [8]
    T. KEPKA: Distributive Steiner quasigroups of order 35, Comment. Math. Univ. Carolinae 19,2 (1978); MR 58 # 6032.Google Scholar
  9. [9]
    Yu. I. MANIN: Cubics forms, North-Holland Publishing Company, Amsterdam-London; American Elsevier Publishing Company, Inc. New-York (1974).Google Scholar
  10. [10]
    R. ROTH, RAY-CHAUDHURI D.K.: Hall Triple Systems and Commutative Moufang Exponent 3 Loops: the case of Nilpotence Class 2, J. Comb. Theory A 36 (1984) 129–162.Google Scholar
  11. [11]
    H.P. YOUNG: Affine triple systems and matroïd designs, Math. Z. 132 (1973) 343–366. MR. 50 # 142.Google Scholar
  12. [12]
    F. ZARA: Une caractérisation des graphes associés aux groupes de Fischer (submitted for publication in European Journal of Combinatorics).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Lucien Bénéteau
    • 1
  • Jacqueline Lacaze
    • 1
  1. 1.Université Paul Sabatier uer migToulouse CedexFrance

Personalised recommendations