Advertisement

On associative algebras of minimal rank

  • Joos Heintz
  • Jacques Morgenstern
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 228)

Keywords

Division Algebra Finite Product Minimal Rank Orthogonal Idempotent Nilpotent Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alder, A. & Strassen, V.: On the algorithmic complexity of associative algebras. Theoret. Comput. Sci. 15 (1981) 201–211.Google Scholar
  2. [2]
    Atiyah, M.F. & Macdonald, I.G.: Introduction to commutative algebra. Addison — Wesley, Reading MA (1969).Google Scholar
  3. [3]
    Baur, W.: personal communication (1982).Google Scholar
  4. [4]
    Behrens, E.-A.: Ring Theory. Pure & Appl. Math. 44; Academic Press, New York (1972).Google Scholar
  5. [5]
    Bini, D. et al.: O(n2.7799) complexity for matrix multiplication. Inform. Proc. Letters 8 (1979) 234–235.CrossRefGoogle Scholar
  6. [6]
    Büchi, W. & Clausen, M.: On a Class of Primary Algebras of Minimal Rank. Linear Algebra and its Appl. 69 (1985) 249–268.CrossRefGoogle Scholar
  7. [7]
    Coppersmith, D. & Winograd, S.: On the asymptotic complexity of matrix multiplication. SIAM J. Comput. 11 (1982) 472–492.CrossRefGoogle Scholar
  8. [8]
    Feig, E.: On systems of bilinear forms whose minimal divisor-free algorithms are all bilinear. J. of Algorithms 2 (1981) 261–281.CrossRefGoogle Scholar
  9. [9]
    Giraldo, L.: Thesis, University of Buenos Aires.Google Scholar
  10. [10]
    de Groote, H.F.: On varieties of optimal algorithms for the computation of bilinear mappings. I. The isotropy group of a bilinear mapping. Theoret. Comput. Sci. 7 (1978) 1–24.CrossRefGoogle Scholar
  11. [11]
    de Groote, H.F.: Characterization of division algebras of minimal rank and the structure of their algorithm varieties. SIAM J. Comput. 12 (1983) 101–117.Google Scholar
  12. [12]
    de Groote, H.F.: Lectures on the complexity of bilinear problems. (to be published) (1982).Google Scholar
  13. [13]
    de Groote, H.F. & Heintz, J.: Commutative algebras of minimal rank. Linear Algebra and its Appl. 55 (1983) 37–68.CrossRefGoogle Scholar
  14. [14]
    Lafon, J.C. & Winograd, S.: A lower bound for the multiplicative complexity of the product of two matrices. (unpublished) (1978).Google Scholar
  15. [15]
    Schönhage, A.: Partial and total matrix multiplication. SIAM J. Comput. 10 (1981) 434–455.CrossRefGoogle Scholar
  16. [16]
    Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13 (1969) 354–356.Google Scholar
  17. [17]
    Strassen, V.: Vermeidung von Divisionen. J. Reine und Angew. Math. 264 (1973) 184–202.Google Scholar
  18. [18]
    Winograd, S.: On computing the discrete Fourier transform. Proc. Nat. Acad. Sci. USA 73 (1976) 1005–1006.Google Scholar
  19. [19]
    Winograd, S.: Some bilinear forms whose multiplicative complexity depends on the field of constants. Math. System Theory 10 (1977) 169–180.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Joos Heintz
    • 1
  • Jacques Morgenstern
    • 2
    • 3
  1. 1.Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET)Universidad Nacional de La PlataLa Plata, Provincia Buenos AiresArgentina
  2. 2.Institut des Mathématiques et Sciences Physiques Parc ValroseUniversité de NiceNice CedexFrance
  3. 3.INRIA, Sophia AntipolisValbonneFrance

Personalised recommendations