Diogenes, circa 1986 Ψαχνω για ενα τιμιo ανϑρoπo

  • Arnold L. Rosenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 227)


The DIOGENES methodology produces designs for fault-tolerant VLSI processor arrays in two stages: First, the desired array is viewed as an undirected graph and is embedded in a book; then, the book embedding is converted to an efficient fault-tolerant layout of the array. We survey here work on both stages of the methodology, highlighting recent progress and pointing out remaining challenges.


Optimal Assignment Processor Array Outerplanar Graph Vertex Graph Partial Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bernhart and P.C. Kainen (1979): The book thickness of a graph. J. Comb. Th. (B) 27, 320–331.Google Scholar
  2. 2.
    J. Buss and P. Shor (1984): On the pagenumber of planar graphs. 16th ACM Symp. on Theory of Computing, 98–100.Google Scholar
  3. 3.
    F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1983): DIOGENES — A methodology for designing fault-tolerant processor arrays. 13th Intl. Conf. on Fault-Tolerant Computing, 26–32.Google Scholar
  4. 4.
    F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1986): Embedding graphs in books: A layout problem with applications to VLSI design. SIAM J. Algebr. Discr. Meth., to appear.Google Scholar
  5. 5.
    Z. Galil, R. Kannan, E. Szemeredi (1986): On nontrivial separators for k-page graphs and simulations by nondeterministic one-tape Turing machines. 18th Ann. ACM Symp. on Theory of Computing.Google Scholar
  6. 6.
    R.A. Games (1986): Optimal book embeddings of the FFT butterfly, Benes, and barrel shifter networks. Algorithmica, to appear.Google Scholar
  7. 7.
    M.R. Garey, D.S. Johnson, G.L. Miller, C.H. Papadimitriou (1980): The complexity of coloring circular arcs and chords. SIAM J. Algebr. Discr. Meth. 1, 216–227.Google Scholar
  8. 8.
    L.S. Heath (1984): Embedding planar graphs in seven pages. 25th IEEE Symp. on Foundations of Computer Science, 74–83.Google Scholar
  9. 9.
    L.S. Heath (1985): Algorithms for Embedding Graphs in Books. Ph.D. Dissertation, Univ. of North Carolina.Google Scholar
  10. 10.
    L.S. Heath (1985): Embedding outerplanar graphs in small books. Typescript, MIT.Google Scholar
  11. 11.
    L.S. Heath and A.L. Rosenberg (1985): Q-graphs. Typescript, MIT.Google Scholar
  12. 12.
    D.J. Muder (1985): Book embeddings of regular complete bipartite graphs. Typescript, The MITRE Corp.Google Scholar
  13. 13.
    A. Reibman (1984): DIOGENES layouts using queues. Typescript, Duke Univ.Google Scholar
  14. 14.
    A.L. Rosenberg (1983): The DIOGENES approach to testable fault-tolerant arrays of processors. IEEE Trans. Comp., C-32, 902–910.Google Scholar
  15. 15.
    A.L. Rosenberg (1984): On designing fault-tolerant VLSI processor arrays. Advances in Computing Research 2, (F.P. Preparata, ed.), JAI Press, Greenwich, CT, 181–204.Google Scholar
  16. 16.
    A.L. Rosenberg and B.T. Smith (1986): The DIOGENES design methodology: from embedding to layout. Rpt. CS-1986-13, Duke Univ.; submitted for publication.Google Scholar
  17. 17.
    A. Wigderson (1982): The complexity of the hamiltonian circuit problem for maximal planar graphs. Princeton Univ. EECS Dept. Rpt. 298.Google Scholar
  18. 18.
    M. Yannakakis (1986): Four pages are necessary and sufficient for planar graphs. 17th. ACM Symp. on Theory of Computing.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Arnold L. Rosenberg
    • 1
  1. 1.Dept. of Computer ScienceDuke UniversityDurham

Personalised recommendations