Advertisement

Efficient parallel evaluation of straight-line code and arithmetic circuits

  • Gary L Miller
  • Vijaya Ramachandran
  • Erich Kaltofen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 227)

Abstract

A new parallel algorithm is given to evaluate a straight line program. The algorithm evaluates a program over a commutative semi-ring R of degree d and size n in time O(log n(log nd)) using M(n) processors, where M(n) is the number of processors required for multiplying n×n matrices over the semi-ring R in O (log n) time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.Google Scholar
  2. 2.
    R.P. Brent. "The Parallel Evaluation of General Arithmetic Expressions". JACM 21, 2 (April 1974), 201–208.Google Scholar
  3. 3.
    S. A. Cook. Towards a Complexity Theory of Synchronous Parallel Computation. Internationales Symposium uber Logik und Algorithmik zu Enren von Professor Hort Specker,, February, 1980, pp.Google Scholar
  4. 4.
    D. Coppersmith, and S. Winograd. "On The Asymptotic Complexity of Matrix Multipication". SIAM J. Comput. 11, 3 (August 1982), 472–492.Google Scholar
  5. 5.
    R. E. Ladner. "The Circuit Value Problem Is Log Space Complete for P". SIGACT News 7, 1 (1975), 18–20.Google Scholar
  6. 6.
    G.L. Miller and J.H. Reif. Parallel Tree Contraction and Its Applications. 26th Symposium on Foundations of Computer Science, IEEE, Portland, Oregon, 1985, pp. 478–489.Google Scholar
  7. 7.
    L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. "Fast Parallel Computation of Polynomials Using Few Processors". SIAM J. Comput. 12, 4 (November 1983), 641–644.Google Scholar
  8. 8.
    L. G. Valiant, and S. Skyum. Lecture Notes in Computer Science. Volume 118: Fast Parallel Computation of Polynomials Using Few Processors. In, Springer-Verlag, New York, 1981, pp. 132–139.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Gary L Miller
    • 1
  • Vijaya Ramachandran
    • 2
  • Erich Kaltofen
    • 3
  1. 1.Computer Science DepartmentMathematical Sciences Research Institute and University of Southern CaliforniaLos Angeles
  2. 2.Coordinated Science LaboratoryMathematical Sciences Research Institute and University of IllinoisUrbana
  3. 3.Computer Science DepartmentMathematical Sciences Research Institute and Rensselaer Polytechnic Inst.Troy

Personalised recommendations