AT2-optimal galois field multiplier for VLSI

  • Martin Fürer
  • Kurt Mehlhorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 227)


For every prime p, there are AT2-optimal VLSI multipliers for Galois fields GF(pn) in standard notation. In fact, the lower bound AT2 = Ω(n2) is matched for every computation time T in the range [Ω(log n), 0(√n)]. Similar results hold for variable primes p too. The designs are based on the DFT on a structure similar to Fermat rings. For p=2 the DFT uses 3l-th instead of 2l-th rotts of unity.


Discrete FOURIER Transform Irreducible Polynomial Cyclic Shift Fermat Ring Galois Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, H. and Andreae, P. (1980), Information transfer and area-time tradeoffs for VLSI multiplication, Comm. ACM 23, No. 1, 20–22.Google Scholar
  2. Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1974), "The Design and Analysis of Computer Algorithms", Addison-Wesley, Reading, Mass.Google Scholar
  3. Beame, P.W., Cook, S.A. and Hoover, H.J. (1984), Log Depth Circuits for Division and Related Problems, 25th FOCS, (IEEE Symp.), 1–6.Google Scholar
  4. Berlekamp, E.R. (1968), "Algebraic Coding Theory", McGraw-Hill, New York.Google Scholar
  5. Brent, R.P. and Kung, H.T. (1981), The chip complexity of binary arithmetic, J. Assoc. Comput. Mach. 28, 521–534.Google Scholar
  6. Fürer, M. (1985), in preparation.Google Scholar
  7. Kannan, R., Miller, R. and Rudolph, L. (1984), Sublinear Parallel Algorithm for Computing the Greatest Common Divisor of Two Integers, 25th FOCS, 7–11.Google Scholar
  8. Karazuba, A. and Ofman, Y. (1962), Multiplication of multidigit numbers on automata, Dokl. Akad. Nauk SSSR 145, 293–294.Google Scholar
  9. Knuth, D.E. (1981), "The Art of Computer Programming", Vol. 2: Semi-numerical Algoriths, Addison-Wesley, Reading, Mass., 2nd ed.Google Scholar
  10. Lengnauer, T. and Mehlhorn, K. (1983), VLSI complexity theory, efficient VLSI algorithms and the HILL design system, in "The International Professorship in Computer Science: Algorithmics for VLSI" (Trullemans, Ed.), Academic Press, New York, in press.Google Scholar
  11. van Lint, J.H. (1971), "Coding Theory", Springer LN in Math. 201, Berlin.Google Scholar
  12. Luk, W.K. and Vuillemin, J.E. (1983), "Recursive Implementation of Optimal Time VLSI Integer Multipliers", VLSI 83, Trondheim, Norway September.Google Scholar
  13. MacWilliams, F.J. and Sloane, N.J.A. (1978), "The Theory of Error-Correcting Codes", North-Holland, Amsterdam.Google Scholar
  14. Mehlhorn, K. (1984), AT2-optimal VLSI Integer Division and Integer Square Rooting, Integration 2, 163–167.Google Scholar
  15. Mehlhorn, K. and Preparata, F.P. (1983), Area-Time Optimal VLSI Integer Multiplier with Minimum Computation Time, Information and Control 58, 137–156.Google Scholar
  16. Mehlhorn, K. and Preparata, F.P. (1985), Area-Time Optimal Division for T=Ω(log n)1+ɛ), TR 05/1985, Sonderforschungsbericht, Univ. of Saarbrücken.Google Scholar
  17. Preparata, F.P. (1983), An Area-Time Optimal Mesh-Connected Multiplier of Large Integers, IEEE. Trans. Comput. C-32, No. 2, 194–198.Google Scholar
  18. Preparata, F.P. and Vuillemin, J. (1981a), The Cube-Connected-Cycles: A Versatile Network for Parallel Computation, Comm. ACM 24, No. 5, 300–309.Google Scholar
  19. Preparata, F.P. and Vuillemin, J. (1981b), Area-Time Optimal VLSI Networks for Computing Integer Multiplication and Discrete Fourier Transform, in "Proceedings, I.C.A.L.P., Haifa, Israel", 29–40.Google Scholar
  20. Reif, J. (1983), Logarithmic Depth Circuits for Algebraic Functions, 24th FOCS, 138–143.Google Scholar
  21. Schönhage, A. (1976), Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, Acta Informatica 7, 395–398.Google Scholar
  22. Schönhage, A. and Strassen V., (1971), Schnelle Multiplikation grosser Zahlen, Computing 7, 281–292.Google Scholar
  23. Wang, C.C., Truong, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K. and Reed, I.S. (1985), VLSI Architectures for Computing Multiplications and Inverses in GF(2m), IEEE Transaction on Computers, C-34, 709–717.Google Scholar
  24. Yao, A.C. (1981), The Entropic Limitations on VLSI Computations, 13th STOC (ACM Symposium), 308–311.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Martin Fürer
    • 1
  • Kurt Mehlhorn
    • 2
  1. 1.Institut für Angew. MathematikUniversität ZürichZürichSwitzerland
  2. 2.FB Angew. Math. und InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations