Advertisement

Physical constraints on models of gamma-ray bursters

  • Richard I. Epstein
6. X-Ray and Gamma-Ray Bursters
Part of the Lecture Notes in Physics book series (LNP, volume 255)

Abstract

The power per logarithmic bandwidth in gamma-ray burst spectra generally increases rapidly with energy through the x-ray range and does not cut off sharply above a few MeV. This spectral form indicates that a very small fraction of the energy from a gamma-ray burst source is emitted at low energies or is reprocessed into x-rays and that the high-energy gamma rays are not destroyed by photon-photon interactions. The implications are that the emission mechanism for the gamma-ray bursts is not synchrotron radiation from electrons that lose most of their energy before being re-accelerated and that either the regions from which the gamma rays are emitted are large compared to the size of a neutron star or the emission is collimated and beamed away from the stellar surface.

Keywords

Neutron Star High Energy Photon Stellar Surface Neutron Star Surface Cyclotron Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Klebesadel, I.B. Strong, and R.A. Olson: Astrophys. J. 182, L85 (1973)Google Scholar
  2. 2.
    E.E. Fenimore, J.G. Laros, R.W. Klebesadel, R.E. Stockdale, and S.R. Kane: “On the Interpretation of Gamma-Ray Burst Continua and Possible Cyclotron Absorption Lines” in LINGENFELTER, HUDSON AND WORRAL [3], pp. 201–209Google Scholar
  3. 3.
    R.E. Lingenfelter, H.S. Hudson, and D.M. Worral, eds.: Gamma Ray Transients and Related Astrophysical Phenomena (Amer. Inst. of Physics, New York 1982)Google Scholar
  4. 4.
    4.M.L. Burns, A.K. Harding, and R. Ramaty, eds.: Positron-Electron Pairs in Astrophysics (Amer. Inst. of Physics, New York 1983)Google Scholar
  5. 5.
    S.E. Woosley, ed.: High Energy Transients in Astrophysics (Amer. Inst. of Physics, New York 1984)Google Scholar
  6. 6.
    E.P. Mazets and S.V. Golenetskii: “Cosmic Gamma-Ray Bursts,” in Soviet Scientific Reviews, Section E 1, pp. 205–266 (1981)Google Scholar
  7. 7.
    G. Vedrenne and G. Chambon: Space Science Reviews 36, 319 (1983)Google Scholar
  8. 8.
    M.J. Rees: “Theoretical Problems Raised by Gamma Bursts and Related Phenomena,” in Accreting Neutron Stars. MPE Report No. 177. W. Brinkmann and J. Trümper, Eds.: (Max-Planck Institute for Extraterrestrial Physics, Garching 1982) p. 179Google Scholar
  9. 9.
    D.Q. Lamb: Ann. N.Y. Acad. Sci. 422, 237 (1983)Google Scholar
  10. 10.
    T.L. Cline: “A Review of the 1979 March 5 Transient” in LINGENFELTER, HUDSON AND WORRAL [3], pp. 17–34Google Scholar
  11. 11.
    S.V. Golenetskii, V.N. Ilinskii, and E.P. Mazets: Nature 307, 41 (1983)Google Scholar
  12. 12.
    E.P. Mazets, S.V. Golenetskii, and Yu.A. Guran: Soviet Astron. Letters 5, 343 (1979)Google Scholar
  13. 13.
    I.G. Mitrofanov, V.Sh. Dolidze, C. Barat, G. Vedrenne, M. Niel, and K. Hurley: Sov. Astron. 28, 547 (1984)Google Scholar
  14. 14.
    P.L. Nolan, G.H. Share, S. Matz,E.L. Chupp,D.J. Forrest, E. Rieger: “High-Energy Emission from Gamma-Ray Bursts” in WOOSLEY [5], pp. 399–402Google Scholar
  15. 15.
    W.A. Wheaton et al.:Astrophys J. (Letters) 185, L57 (1973)Google Scholar
  16. 16.
    M. Ka toh,T. Murakami,J. Nishimura, T. Yamagami, M. Fujii, and M. Itoh: “Observation of a Cosmic Gamma-.Ray Burst on Hakucho” in WOOSLEY [5], pp. 390–398Google Scholar
  17. 17.
    D. Gilman, A.E. Metzger, R.H. Parker, L.G. Evans, and J.I. Trombka: Astrophys., J. 236, 951 (1980)Google Scholar
  18. 18.
    J.G. Laros, W.D. Evans, E.E. Fenimore, R.W. Klebesadel, S. Shulman, and G. Fritz: Astrophys. J. 286, 681 (1984)Google Scholar
  19. 19.
    J.G. Laros, M. Katoh, and T. Murakami:“X-Ray Observations of Gamma-Ray Bursts” to be published in the Proceedings from the Stanford Conference on Gamma-Ray Bursts (1985)Google Scholar
  20. 20.
    S.M. Matz, D.J. Forrest, W.T. Vestrand, E.L. Chupp, G.H. Share, and E. Rieger: Astrophys, J. (Letters) 288, L37 (1985)Google Scholar
  21. 21.
    E.P. Mazets and S.V. Golenetskii: Astrophys. Space Sci. 75, 47 (1981)Google Scholar
  22. 22.
    E.P. Mazets, S.V. Golenetskii, R.L. Aptekar, Yu.A. Guran, and V.N. Ilinskii: Nature 290, 378 (1981)Google Scholar
  23. 23.
    E.P. Mazets, S.V. Golenetskii, V.N. Ilinskii,Yu.A. Guran, R.L. Aptekar, V.N. Panov, I.A. Sokolov, Z.Ya. Sokolova, and T.V. Kharitonova: Astrophys. Space Sci. 82, 261 (1981)Google Scholar
  24. 24.
    P. L. Nolan, G. H. Share, E. L. Chupp, D. J. Forrest, and S. M. Matz: Nature 311, 360 (1984)Google Scholar
  25. 25.
    G.J. Heuter: “Observations of an Absorption Feature in a Gamma Ray Burst Spectrum” in WOOSLEY [5], pp. 373–377Google Scholar
  26. 26.
    B.R. Dennis, K.J. Frost, A.L. Kiplinger, L.E. Orwig, U. Desai, and T.L. Cline: “Time Variations of an Absorption Feature in the Spectrum of the Gamma-Ray Burst on 1980 April 19” in LINGENFELTER, HUDSON AND WORRAL [3], pp. 153–162Google Scholar
  27. 27.
    B.J. Teegarden and T.L. Cline: Astrophys. J. (Letters) 236, L67 (1980)Google Scholar
  28. 28.
    S.E. Woosley and R.E. Tamm: Nature 263, 101 (1976)Google Scholar
  29. 29.
    S.E. Woosley and R.K. Wallace: Astrophys. J. 258, 716 (1982)Google Scholar
  30. 30.
    J.M. Hameury, S. Bonazzola, J. Heyvaerts, J. Ventura: Astron. Astrophys. 111, 242 (1982)Google Scholar
  31. 31.
    M. Harwit and E.E. Salpeter: Astrophys. J. (Letters), 186, L37 (1973)Google Scholar
  32. 32.
    S.A. Colgate and A.G. Petschek: Astrophys. J. 248, 771 (1981)Google Scholar
  33. 33.
    M.J. Newman and A.N. Cox: Astrophys. J. 342, 319 (1980)Google Scholar
  34. 34.
    W.M. Howard, J.R. Wilson, and R.T. Barton: Astrophys. J. 249, 302 (1981)Google Scholar
  35. 35.
    D. Van Buren: Astrophys. J. 249, 297 (1981)Google Scholar
  36. 36.
    R. Ramaty,S. Bonazzola, T.L. Cline, D. Kazanas, P. Meszaros, and R.E. Lingenfelter: Nature 287, 122 (1980)Google Scholar
  37. 37.
    D.C. Ellison and D. Kazanas: Astron. and Astrophys. 128, 102 (1983)Google Scholar
  38. 38.
    A.C. Fabian, V. Icke, and J.E. Pringle: Astrophys. and Space Sci. 42, 77 (1976)Google Scholar
  39. 39.
    A.I. Tsygan: Astron. and Astrophys. 44, 21 (1975)Google Scholar
  40. 40.
    F. Pacini and M. Ruderman: Nature 251, 399 (1974)Google Scholar
  41. 41.
    I.G. Mitrofanov: Astrophys. and Space Sci. 105, 245 (1984)Google Scholar
  42. 42.
    F.C. Michel: Astrophys. J. 290, 721 (1985)Google Scholar
  43. 43.
    P. Kafka and F. Meyer: “Gamma-Ray Bursts-The Roundabout Way?” in WOOSLEY [5], pp. 578–580Google Scholar
  44. 44.
    R.I. Epstein: Astrophys. J. 291, 822 (1985)Google Scholar
  45. 45.
    D.Q. Lamb, F.K. Lamb, and D. Pines: Nature Phys. Sci. 246, 52 (1973)Google Scholar
  46. 46.
    S.A. Colga te, A.G. Pe tschek, and R. Sarracino: “Gamma Burst Emission from Neutron Star Accretion” in WOOSLEY [5], pp. 548–554Google Scholar
  47. 47.
    J.M. Hameury, J.P. Lasota, S. Bonazzola, and J. Heyvaerts: Astrophys. J. 293, 56 (1985)Google Scholar
  48. 48.
    E.P. Liang, T.E. Jernigan, and R. Rodrigues: Astrophys. J. 271, 766 (1983)Google Scholar
  49. 49.
    E.E. Fenimore, R.W. Klebesadel, and J.G. Laros: “Inverse Comptonization vs. Thermal Synchrotron” in WOOSLEY [5], pp. 590–596Google Scholar
  50. 50.
    R.I. Epstein: “Limitson the Space Density of Gamma-Ray Burst Sources” Astrophys, J. in press (1985)Google Scholar
  51. 51.
    M.C. Jennings: “The Gamma-Ray Burst Spatial Distribution” in WOOSLEY [5], pp. 412–421Google Scholar
  52. 52.
    I.S. Shklovskii and I.G. Mitrofanov: Mon. Not. Roy. Astron. Soc. 212, 545 (1985)Google Scholar
  53. 53.
    S.E. Woosley: “The Theory of Gamma-Ray Bursts” in WOOSLEY [5), pp. 485–511Google Scholar
  54. 54.
    J.H. Swank,R.H. Becker,E.A. Boldt, S.S. Holt, S.H. Pravdo, and P.J. Serlemitsos: Astrophys. J. (Letters) 212, 173 (1977)Google Scholar
  55. 55.
    E.L. Chupp: Ann. Rev. Astron. Astrophys. 22, 359 (1984)Google Scholar
  56. 56.
    F.K. Knight: “Properties of the Crab Pulsar Inferred from the Phase-Averaged Spectrum” in BURNS, HARDING AND RAMATY [4], pp. 141–151Google Scholar
  57. 57.
    N.E. White, J.L. Kaluzienski,and J.H. Swank: “The Spectra of X-Ray Transients” in WOOSLEY [5], pp. 31–48Google Scholar
  58. 58.
    E.P. Liang and P.L. Nolan: Space Science Reviews 38, 353 (1984)Google Scholar
  59. 59.
    R.S. Bussard: Astrophys. J. 284, 357 (1984)Google Scholar
  60. 60.
    J.N. Imamura et al.: in preparation 61. R. McCray: this volumeGoogle Scholar
  61. 61.
    E.H. Gudmundsson, C.J. Pethick, and R.I. Epstein: Astrophys. J. 272, 286 (1983)Google Scholar
  62. 63.
    T. Erber: Rev. Mod. Phys. 38, 626 (1966)Google Scholar
  63. 64.
    A. A. Zdziarski: Astron. and Astrophys. 134, 301 (1984)Google Scholar
  64. 65.
    G. G. C. Palumbo, G. Pizzichini and G. R. Vespignani: Astrophys. J. 189, L9 (1974)Google Scholar
  65. 66.
    J. L., Atteia et al.: “Limits to the Burster Repetition Rate as Deduced from the 2nd Catalog of the Interplanetary Network.” in the Conference Papers of the 19th International Cosmic Ray Conference, La Jolla, USA, 1, 44 (1985)Google Scholar
  66. 67.
    G. J. Hueter and J. L. Matteson: “HEAO-1 Observations of Gamma Ray Bursts,” in the Conference Papers of the 19th International Cosmic Ray Conference, La Jolla, USA, 1, 1 (1985)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Richard I. Epstein
    • 1
  1. 1.Space Astronomy and AstrophysicsLos Alamos National LaboratoryLos Alamos

Personalised recommendations