Advertisement

Semigroups and languages of dot-depth 2

  • Howard Straubing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 226)

Abstract

This paper is a contribution to the problem of effectively determining the dot-depth of a star-free language, a problem in the theory of automata and formal languages with close connections to algebra and formal logic. We conjecture an effective criterion for determining whether a given language has dot-depth 2. The condition is shown to be necessary in general, and sufficient for languages over a two-letter alphabet. The condition involves a novel use of categories in the study of semigroup-theoretic problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B+K].
    J. A. Brzozowski and R. Knast, The dot-depth hierarchy of star-free events is infinite, JCSS 16 (1978), 37–55.Google Scholar
  2. [B+S].
    J. A. Brzozowski and I. Simon, Characterizations of locally testable events, Discrete Math 4 (1973), 243–271.Google Scholar
  3. [BUC].
    J. R. Büchi, Weak second-order arithmetic and finite automata, Z. Math Logik Grundlagen Math. 6 (1960), 66–92.Google Scholar
  4. [EIL].
    S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press, New York, 1976.Google Scholar
  5. [KNA].
    R. Knast, A semigroup characterization of dot-depth one languages, RAIRO Inform. Théor. (1984).Google Scholar
  6. [M+P].
    R. McNaughton and S. Papert, Counter-free Automata, MIT Press, Cambridge, Mass., 1971.Google Scholar
  7. [Ma+P].
    S. Margolis and J.E. Pin, Graphs, inverse semigroups and languages, Proceedings of Conference on Semigroups, Marquette University, 1984.Google Scholar
  8. [MCN].
    R. McNaughton, Algebraic decision procedures for local testability, Math. Systems Theory 8 (1974), 60–76.Google Scholar
  9. [P+P].
    D. Perrin and J. E. Pin, First-order logic and star-free sets, Research report 85-23, Laboratoire d'Informatique Théorique et Programmation, 1985.Google Scholar
  10. [P+S].
    J.E. Pin and H. Straubing, Monoid of upper triangular matrices, Colloquia Mathematica Soc. J. Bolyai 39 (1981), 259–272.Google Scholar
  11. [SCH].
    M.P. Schützenberger, On finite monoids having only trivial subgroups, Information and Control 8 (1965) 190–194.Google Scholar
  12. [SIM].
    I. Simon, Piecewise testable events, Lecture Notes in Computer Science 33 (Springer, Berlin, 1975).Google Scholar
  13. [STR1].
    H. Straubing, A generalization of the Schützenberger product of finite monoids, Theoretical Computer Science 13 (1981) 137–150.Google Scholar
  14. [STR2].
    H. Straubing, Finite semigroup varieties of the form V*D, J. Pure and Applied Algebra 36 (1985), 53–94.Google Scholar
  15. [T+W].
    D. Thérien and A. Weiss, Graph congruences and wreath products, J. Pure and Applied Algebra 36 (1985), 205–215.Google Scholar
  16. [THE].
    D. Thérien, Classification of finite monoids: the language approach, Theoretical Computer Science 14 (1981), 195–208.Google Scholar
  17. [THO].
    W. Thomas, Classifying regular events in symbolic logic, JCSS 25 (1982), 360–376.Google Scholar
  18. [TIL].
    B. Tilson, Categories as algebra, Preprint.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Howard Straubing
    • 1
  1. 1.Department of Computer ScienceBoston CollegeChestnut Hill

Personalised recommendations