Subpolynomial complexity classes of real functions and real numbers

  • N. Th. Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 226)


In this paper a definition of computability and complexity of real functions and real numbers is given which is open to methods of recursive function theory as well as to methods of numerical analysis. As an example of application we study the computational complexity of roots and thereby establish a subpolynomial hierarchy of real closed fields.


Real Function Simple Root Turing Machine Regular Function Computable Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alt, H., Multiplication is the easiest nontrivial arithmetic function, Theoret. Comput. Sci. 36 (1985) 333–339Google Scholar
  2. [2]
    Brent, R.P., The complexity of multiple precision arithmetic, Proc. Seminar on Complexity of Computational Problem Solving, (Queensland U. Press, Brisbane, Australia, 1975) 126–165Google Scholar
  3. [3]
    Brent, R.P., Fast multiple precision evaluation of elementary functions, J. ACM 23 (1976) 242–251Google Scholar
  4. [4]
    Deil, T., Darstellungen und Berechenbarkeit reeler Zahlen, Informatik Berichte 51, Fern Universität Hagen (1984)Google Scholar
  5. [5]
    Ko, K. and Friedman, H., Computational complexity of real functions, Theoret. Comput. Sci. 20 (1982) 323–352Google Scholar
  6. [6]
    Kreitz, C., Theorie der Darstellungen und ihre Anwendung in der konstruktiven Analysis, Informatik Berichte 50, FernUniversität Hagen (1984)Google Scholar
  7. [7]
    Kreitz, C. and Weihrauch, K., Theory of representations, Theoret. Comput. Sci. 38 (1985) 35–53Google Scholar
  8. [8]
    Kreitz, C. and Weihrauch, K., Complexity theory on real numbers and real functions, Proc. 6th GI-Conf., Lecture notes in computer science 145 (Springer, Berlin, 1982) 165–174Google Scholar
  9. [9]
    Müller, N.Th., Computational complexity of real functions and real numbers, Informatik Berichte?, FernUniversität Hagen (to appear)Google Scholar
  10. [10]
    Owens, M.R., Compound algorithms for digit online arithmetic, Proc. 5th Symp. Comput. Arith., Ann Arbor, MI (1981) 64–71Google Scholar
  11. [11]
    Owens, M.R. and Irwin, M.J., On-line algorithms for the design of pipeline architectures, Proc. Annu. Symp. Comput. Arch., Philadelphia, PA (1979) 12–19Google Scholar
  12. [12]
    Paul, W.J., Komplexitätstheorie (Teubner, Stuttgart, 1978)Google Scholar
  13. [13]
    Schönhage, A., The fundamental theorem of algebra in terms of computational complexity, Preliminary Report, Mathematisches Institut der Universität Tübingen, 1982Google Scholar
  14. [14]
    Schönhage, A. and Strassen, V., Schnelle Multiplikation großer Zahlen, Computing 7 (1971) 281–292Google Scholar
  15. [15]
    Trivedi, K.S. and Ercegovac, M.D., On-line algorithms for division and multiplication, IEEE Trans. Comput., vol. C-26 (1977) 681–687Google Scholar
  16. [16]
    Weihrauch, K., Type 2 recursion theory, Theoret. Comput. Sci. 38 (1985) 17–33Google Scholar
  17. [17]
    Weihrauch, K., Computability (Springer, Berlin, to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • N. Th. Müller
    • 1
  1. 1.LG Theoretische Informatik FernUniversität HagenHagen

Personalised recommendations