Advertisement

Decompositions of nondeterministic reductions

  • Klaus-Jörn Lange
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 226)

Abstract

Nondeterministic reductions with a polynomial time bound or logarithmic space bound are characterized in terms of formal language operations like nonerasing homomorphisms and Kleene's star by relativizing the well-known equations NP = LOG (H (DSPACE (log n))), NSPACE (log n) = LOG (H (1-DSPACE (log n))), and NSPACE (log n) = LOG (DSPACe (log n) *). As corollaries we get Σ k+1 P = LOG (H(Π k P )) and OΣ k+1 L =((OΠ k L )*). Further on, we derive the relation NPOL (A) = NLOG (NLOG (A)) for every language A. Finally, we get that AΣ log L contains the logarithmic oracle hierarchy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Chandra, D. Kozen, L. Stockmeyer: Alternation, J. Assoc. Comput. Mach. 28 (1981), 114–133.Google Scholar
  2. [2]
    S. Cook: The complexity of theorem proving procedures, Proc. of the 3rd Annual Symp. on Theory of Computing, 1971, 151–158.Google Scholar
  3. [3]
    P. Flajolet, J. Steyaert: Complexity of classes of languages and operators, IRIA Laboria, Rap. de Recherche No. 92, Nov. 1974.Google Scholar
  4. [4]
    R. Ladner, N. Lynch: Relativization of questions about log space computability, Math. Systems Theory 10 (1976), 19–32.Google Scholar
  5. [5]
    R. Ladner, N. Lynch, A. Selman: A comparison of polynomial time reducibilities, Theoret. Comput. Sci. 1 (1975), 103–123.Google Scholar
  6. [6]
    K.-J. Lange: Nondeterministic log-space reductions, Proc. of the 11th Symp. of Math. Foundations of Comput. Science, 1984, Springer LNCS 176, 378–388.Google Scholar
  7. [7]
    K.-J. Lange: Nichtdeterministische Reduktionen und Logarithmische Hierarchien, submitted as ‘Habilitationsschrift’ at the University of Hamburg, 1985, in German.Google Scholar
  8. [8]
    T. Long: Strong nondeterministic polynomial-time reducibilities, Theoret. Comput. Sci. 21 (1982), 1–25.Google Scholar
  9. [9]
    N. Lynch: Log space recognition and translation of parenthesis languages, J. Assoc. Comput. Mach. 24 (1977), 583–590.Google Scholar
  10. [10]
    C. Papadimitriou, M. Yannakakis: The complexity of facets (and some facets of complexity), J. Comput. System Sci. 28 (1984), 244–259.Google Scholar
  11. [11]
    W. Ruzzo: Tree-size bounded alternation, J. Comput. System Sci. 21 (1980), 218–235.Google Scholar
  12. [12]
    W. Ruzzo: On uniform circuit complexity, J. Comput. System Sci. 22 (1981), 365–383.Google Scholar
  13. [13]
    W. Ruzzo, J. Simon, M. Tompa: Space-bounded hierarchies and probabilistic computations, J. Comput. System Sci. 28 (1984), 216–230.Google Scholar
  14. [14]
    W. Savitch: A note on relativized log space, Math. Systems Theory 16 (1983), 229–235.Google Scholar
  15. [15]
    L. Stockmeyer, A. Meyer: Word problems requiring exponential time: preliminary report, Proc. of the 5th Annual ACM Symp. on Theory of Computing, 1973, 1–9.Google Scholar
  16. [16]
    C. Wrathall: Complete sets and the polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1976), 23–33.Google Scholar
  17. [17]
    B. Kirsig, K.-J. Lange: Separation with the Ruzzo, Simon, and Tompa relativization implies DSPACE (log n) ≠ NSPACE (log n), 1986, submitted for publication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Klaus-Jörn Lange
    • 1
  1. 1.Fachbereich Informatik der Universität HamburgHamburg 13

Personalised recommendations