Finite biprefix sets of paths in a Graph

  • Clelia De Felice
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 226)


Partial Product Good Path Closed Path Prefix Code Proper Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Berstel, D. Perrin, The theory of Codes, Academic Press, 1985Google Scholar
  2. [2]
    J. Berstel, C. Reutenauer, Rational Series and Their Languages, Springer-Verlag, to appearGoogle Scholar
  3. [3]
    Y. Césari (1972), Sur un algorithme donnant les codes bipréfixes finis, Math. Syst. Theory 6 (3), 221–225Google Scholar
  4. [4]
    Y. Césari (1979), Propriétés combinatoires des codes bipréfixes complets finis: in D. Perrin, ed., Actes de la 7ème Ecole de Printemps d' Informatique Théorique (Jougne, 1979) 29–46Google Scholar
  5. [5]
    G. Lallement, Semigroups and Combinatorial Applications, J. Wiley and Sons, New York, 1979Google Scholar
  6. [6]
    D. Perrin (1984), Completing biprefix codes, Theor. Comp. Science 28, 329–336Google Scholar
  7. [7]
    C. Reutenauer (1981), Intégration des codes bipréfixes (d'après Césari), Seminaire d'Informatique Théorique LITP (1981–1982) 67–81Google Scholar
  8. [8]
    C. Reutenauer, Ensembles libres de chemins dans un graphe, to appearGoogle Scholar
  9. [9]
    B. Tilson, Semigroupoids, to appearGoogle Scholar
  10. [10]
    M.P. Schützenberger (1961), On a special class of recurrent events, Ann. Math. Stat. 32, 1201–1213.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Clelia De Felice
    • 1
    • 2
  1. 1.Istituto di Matematica dell'Università di NapoliNapoliItalie
  2. 2.LITPParisFrance

Personalised recommendations