On exponential lowness

  • R. Book
  • P. Orponen
  • D. Russo
  • O. Watanabe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 226)


Turing Machine Exponential Time Kolmogorov Complexity Oracle Query Compact Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Balcázar and R. Book, On generalized Kolmogorov complexity, STACS 86, to appear.Google Scholar
  2. 2.
    J. Balcázar, R. Book, and U. Schöning, Sparse oracles, lowness, and highness, SIAM J. Computing 16 (1986), to appear.Google Scholar
  3. 3.
    R. Book, Tally languages and complexity classes, Info. & Control 26 (1974), 186–193.Google Scholar
  4. 4.
    A. Chandra, D. Kozen, and L. Stockmeyer, Alternation, J. Assoc. Comput. Mach. 28 (1981), 114–133.Google Scholar
  5. 5.
    M. Dekhtyar, On the relation of deterministic and nondeterministic complexity classes, Math. Found. Comput. Sci., Lecture Notes in Computer Science 45 (1977), Springer-Verlag, 282–287.Google Scholar
  6. 6.
    A. Goldberg and M. Sipser, Compression and ranking, Proc. 17 th ACM Sym. Theory of Computing 1985, 440–448.Google Scholar
  7. 7.
    J. Hartmanis, On aparse sets in NP-P, Info. Proc. Letters 16 (1983), 55–60.Google Scholar
  8. 8.
    J. Hartmanis, Generalized Kolmogorov complexity and the structure of feasible computations, Proc. 24 thIEEE Sump. Foundations of Computer Science (1983), 439–445.Google Scholar
  9. 9.
    J. Hartmanis, V. Sewelson, and N. Immerman, Sparse sets in NP-P: EXPTIME versus NEXPTIME, Proc. 15 th ACM Symp. Theory of Computing (1983), 382–391.Google Scholar
  10. 10.
    H. Heller, On relativized polynomial and exponential computations, SIAM J. Computing 13 (1984), 717–725.Google Scholar
  11. 11.
    R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity classes, Proc. 12 th ACM Symp. Theory of Computing (1980), 302–309.Google Scholar
  12. 12.
    K. Ko and U. Schöning, On circuit-size complexity and the low hierarchy in NP, SIAM J. Computing 14 (1985), 41–51.Google Scholar
  13. 13.
    P. Orponen, Complexity class of alternating machines with oracles, Automata. Languages, and Programming, Lecture Notes in Computer Science 154 (1983), Springer-Verlag, 573–584.Google Scholar
  14. 14.
    U. Schöning, A low and a high hierarchy in NP, J. Comput. Syst. Sci. 27 (1983), 14–28.Google Scholar
  15. 15.
    J. Simon, On Some Central Probems in Computational Complexity, Ph.D. dissertation, Cornell University, 1975.Google Scholar
  16. 16.
    L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1976), 1–22.Google Scholar
  17. 17.
    C. Wilson, Relativization, Reducibilities, and the Exponential Hierarachy, M. Sc. thesis, Univ. of Toronto, 1980.Google Scholar
  18. 18.
    C. Wrathall, Complete sets and the polylnomial-time hierarchy, Theoret. Comput. Sci. 3 (1976), 23–33.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • R. Book
    • 1
  • P. Orponen
    • 2
  • D. Russo
    • 1
    • 3
  • O. Watanabe
    • 4
  1. 1.Department of MathematicsUniversity of California at Santa BarbaraSanta BarbaraUSA
  2. 2.Department of Computer ScienceUniversity of HelsinkiHelsinki 25Finland
  3. 3.Digital Sound, Inc.Santa BarbaraUSA
  4. 4.Department of Information ScienceTokyo Institute of TechnologyTokyoJapan

Personalised recommendations