Advertisement

Design of biospecific compounds which simulate enzyme-substrate interaction

  • Kazutaka Tanizawa
  • Yuichi Kanaoka
Conference paper
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 136)

Abstract

This present article surveys the recent development of biospecific compounds which interact with active sites of enzymes. These compounds are classified according to their mode of interaction. The characteristic features of interaction are discussed and the molecular basis for the design of the specific compounds of each type is considered. Significance of the enzyme-specific compounds in basic research and in the application of chemotherapeutics is exemplified. The development of “inverse substrates”, specific compounds for trypsin and trypsin-like enzymes of a new type, is also described. The basic idea for the design of inverse substrates and their applicabilities are discussed.

Keywords

Active Site Structure Isatoic Anhydride Affinity Label Transition State Analog Acyl Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Rozenblit, A. B.: Computer-assisted drug design. Strategy and alogrithms, in: Strategy in Drug Research, (ed.) Buisman, J. A. K., Vol. 4, p. 287, Amsterdam, Elsvier 1982Google Scholar
  2. 2.
    Wilchek, M. et al.: Methods in Enzymol. 104, 3 (1984)Google Scholar
  3. 3.
    Horejsi, V.: ibid. 104, 275 (1984)Google Scholar
  4. 4.
    Bayley, H., Knowles, J. R.: ibid. 46, 69 (1977)Google Scholar
  5. 5.
    Peach, M. J.: Physiol. Rev. 57, 313 (1977)Google Scholar
  6. 6.
    Cushman, D. W. et al.: Biochemistry 16, 5484 (1977)Google Scholar
  7. 7.
    Cushman, D. W. et al.: Angiotensin-converting enzyme inhibitors, in: Enzyme Inhibitors as Drugs, (ed.) Sandler, M., p. 231, London, Macmillan Press 1980Google Scholar
  8. 8.
    Powell, J. R. et al.: Abstr. Eur. Meet. Hypertens. 1st. Milan 355 (1983)Google Scholar
  9. 9.
    Unger, T. et al.: Eur. J. Pharmacol. 78, 411 (1982)Google Scholar
  10. 10.
    McEvoy, F. J. et al.: J. Med. Chem. 26, 381 (1983)Google Scholar
  11. 11.
    Thorsett, E. D. et al.: Biochem. Biophys. Res. Comm. 111, 166 (1983)Google Scholar
  12. 12.
    Abiko, Y.: Medicinal Pharmacy 10, 8 (1976)Google Scholar
  13. 13.
    Burchall, J. J.: Mechanism of action of antimicrobial and antitumor agents, in: Antibitics, (eds.) Corcoran, J. W., Hahn, F. E., Vol. III, p. 304, Berlin, Springer 1975Google Scholar
  14. 14.
    Beddell, C. R.: Chem. Soc. Rev. 13, 279 (1984)Google Scholar
  15. 15.
    Kuyper, L. K. et al.: J. Med. Chem. 28, 303 (1985)Google Scholar
  16. 16.
    Blaney, J. M. et al.: Chem. Rev. 84, 333 (1984)Google Scholar
  17. 17.
    Edy, J. et al.: Thromb. Res. 8, 513 (1977)Google Scholar
  18. 18.
    Kanaoka, Y. et al.: Chem. Pharm. Bull. 33, 1721 (1985)Google Scholar
  19. 19.
    Kanaoka, Y.: Angew. Chem., Int. Ed. Engl. 16, 137 (1977)Google Scholar
  20. 20.
    Jameson, G. W. et al.: Biochem. J. 131, 107 (1973)Google Scholar
  21. 21.
    Chase, T. Jr., Shaw, E.: Methods in Enzymol. 19, 20 (1975)Google Scholar
  22. 22.
    Coleman, P. L. et al.: ibid. 45, 12 (1976)Google Scholar
  23. 23.
    Tanizawa, K. et al.: Biochem. Biophys. Res. Comm. 32, 893 (1968)Google Scholar
  24. 24.
    Chase, T. Jr., Shaw, E.: ibid. 29, 508 (1967)Google Scholar
  25. 25.
    Livingston, D. C. et al.: Biochemistry 20, 4298 (1981)Google Scholar
  26. 26.
    Pauling, L.: Chem. Eng. News 24, 1375 (1946)Google Scholar
  27. 27.
    Lienhard, G. E.: Science 180, 149 (1973)Google Scholar
  28. 28.
    Wolfenden, R.: Methods in Enzymol. 46, 15 (1977)Google Scholar
  29. 29.
    Matthews, D. A. et al.: J. Biol. Chem. 250, 7120 (1975)Google Scholar
  30. 30.
    Lindquist, R. N., Nguyen, A. C.: J. Am. Chem. Soc. 99, 6437 (1977)Google Scholar
  31. 31.
    Umezawa, H. et al.: J. Antibiotics 25, 267 (1972)Google Scholar
  32. 32.
    Aoyagi, T. et al.: ibid. 22, 283 (1969)Google Scholar
  33. 33.
    Okura, A. et al.: ibid. 28, 337 (1975)Google Scholar
  34. 34.
    Thompson, R.: Methods in Enzymol. 46, 220 (1977)Google Scholar
  35. 35.
    Brayer, G. D. et al.: Proc. Natl. Acad. Sci. (USA) 76, 96 (1979)Google Scholar
  36. 36.
    Kuramochi, H. et al.: J. Biochem. 86, 1403 (1979)Google Scholar
  37. 37.
    Brodbeck, U. et al.: Biochim. Biophys. Acta 567, 357 (1979)Google Scholar
  38. 38.
    Geratz, J. D.: Arch. Biochem. Biophys. 118, 90 (1967)Google Scholar
  39. 39.
    Tanizawa, K. et al.: Z. Physiol. Chem. 366, 87 (1985)Google Scholar
  40. 40.
    Blake, C. C. F. et al.: Proc. Roy. Soc. B167, 378 (1967)Google Scholar
  41. 41.
    Secemski, I. I., Lienhard, G. E.: J. Biol. Chem. 249, 2932 (1974)Google Scholar
  42. 42.
    Shaw, E.: Methods in Enzymol. 25, 387, 655 (1972)Google Scholar
  43. 43.
    Kettner, C., Shaw, E.: ibid. 80, 826 (1981)Google Scholar
  44. 44.
    Hess, G. M. et al.: Biochemistry 11, 3787 (1972)Google Scholar
  45. 45.
    Zispel, N. et al.: Biocem. Biophys. Res. Comm. 58, 457 (1974)Google Scholar
  46. 46.
    Plummer, T. H. Jr. et al.: J. Biol. Chem. 244, 5246 (1969)Google Scholar
  47. 47.
    Lawson, W. B., Shramm, H.-J.: Biochemistry, 4, 377 (1965)Google Scholar
  48. 48.
    Walsh, C. T.: Ann. Rev. Biochem. 53, 493 (1984)Google Scholar
  49. 49.
    John, R. A.: Enzyme-Induced Inactivation of Pyridoxal Phosphate-Dependent Enzymes: Approaches to the design of specific inhibitors, in: Enzyme Inhibitors as Drugs, (ed.) Sandler, M., p. 73, London, Macmillan Press 1980Google Scholar
  50. 50.
    Fowler, L. J. et al.: Biochem. J. 130, 569 (1972)Google Scholar
  51. 51.
    Wolfenden, R.: Methods in Enzymol. 46, 15 (1977)Google Scholar
  52. 52.
    White, E. H. et al.: J. Am. Chem. Soc. 97, 2290 (1975)Google Scholar
  53. 53.
    Westkamper, R., Abels, R.: Biochemistry 22, 2356 (1983)Google Scholar
  54. 54.
    Daniels, S. et al.: J. Biol. Chem. 258, 15046 (1983)Google Scholar
  55. 55.
    Wilson, I. B. et al.: J. Biol. Chem. 236, 1498 (1961)Google Scholar
  56. 56.
    Moorman, A., Abeles, R.: J. Am. Chem. Soc. 104, 6785 (1982)Google Scholar
  57. 57.
    Chase, T. Jr., Shaw, E.: Biochemistry 8, 2212 (1969)Google Scholar
  58. 58.
    Tipper, D. J., Strminger, J. L.: Proc. Natl. Acad. Sci. (USA) 54, 1133 (1965)Google Scholar
  59. 59.
    Frére, J. E. et al.: Eur. J. Biochem. 57, 343 (1975)Google Scholar
  60. 60.
    Ishii, S., Kasai, K.: Methods in Enzymol. 80, 842 (1981)Google Scholar
  61. 61.
    Fisher, J. F., et al.: Biochemistry 17, 2180 (1978)Google Scholar
  62. 62.
    Fisher, J. F., Knowles, J. R.: The Inactivation of β-Lactamase by Mechanism-Based-Reagents, in: Enzyme Inhibitors as Drugs, (ed.) Sandler, M., P 209, London, Macmillan Press 1980Google Scholar
  63. 63.
    Hartley, S., Wise, R.: J. Antimicrob. Chemother. 10, 49 (1982)Google Scholar
  64. 64.
    Firestone, R. A.: US Patent 4342758 (1982)Google Scholar
  65. 65.
    Tanizawa, K. et al.: J. Am. Chem. Soc. 99, 4485 (1977)Google Scholar
  66. 66.
    Fujioka, T. et al.: Chem. Pharm. Bull. 28, 1899 (1980)Google Scholar
  67. 67.
    idem.: J. Biochem. 89, 637 (1980)Google Scholar
  68. 68.
    Tanizawa, K., Kanaoka, Y.: Experientia 35, 16 (1979)Google Scholar
  69. 69.
    Tanizawa, K. et al.: J. Biochem. 8, 417 (1980)Google Scholar
  70. 70.
    Tanizawa, K. et al.: ibid. 92, 945 (1982)Google Scholar
  71. 71.
    Nakayama, H. et al.: J. Am. Chem. Soc. 102, 3214 (1980)Google Scholar
  72. 72.
    Nakayama, H. et al.: Eur. J. Biochem. 112, 403 (1980)Google Scholar
  73. 73.
    Fujioka, T. et al.: Biochim. Biophys. Acta 612, 205 (1980)Google Scholar
  74. 74.
    Nozawa, M. et al.: J. Pharm. Dyn. 4, 559 (1981)Google Scholar
  75. 75.
    idem.: ibid. 3, 213 (1980)Google Scholar
  76. 76.
    idem.: J. Biochem. 91, 1837 (1982)Google Scholar
  77. 77.
    McLaren, A. B., Tanizawa, K.: Aust. J. Biol. Sci. 37, 205 (1984)Google Scholar
  78. 78.
    Smith, R. et al.: Nature 290, 505 (1981)Google Scholar
  79. 79.
    Fastrez, J., Fersht, A. R.: Biochemistry 12, 1067 (1973)Google Scholar
  80. 80.
    Shemyakin, M. M. et al.: Angew. Chem., Int. Ed. Engl. 8, 492 (1969)Google Scholar
  81. 81.
    Jones, J. B. et al.: Biochim. Biophys. Acta 341, 284 (1974)Google Scholar
  82. 82.
    Hartman, H., Holler, E.: Eur. J. Biochem. 16, 80 (1970)Google Scholar
  83. 83.
    Muramatsu, M. et al.: J. Biochem. 62, 408 (1967)Google Scholar
  84. 84.
    Wang, C., Shaw, E.: Arch. Biochem. Biophys. 150, 259 (1972)Google Scholar
  85. 85.
    Haidema, J. H., Kaiser, E. T.: J. Am. Chem. Soc. 90, 1860 (1968)Google Scholar
  86. 86.
    Nakano, M. et al.: Chem. Pharm. Bull. 28, 2212 (1980)Google Scholar
  87. 87.
    Nozawa, M. et al.: Biochim. Biophys. Acta 611, 314 (1980)Google Scholar
  88. 88.
    idem.: J. Pharm. Dyn. 3, 321 (1980)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Kazutaka Tanizawa
    • 1
  • Yuichi Kanaoka
    • 1
  1. 1.Department of Synthetic Chemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan

Personalised recommendations