Diagonalisation methods in a polynomial setting

  • Leen Torenvliet
  • Peter van Emde Boas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 223)


In the present paper an overview is presented of diagonalisation methods which have been used for the construction of oracle sets relative to which complexity classes in the P-Time Hierarchy are separated structurally. A comparison of the methods is made on the basis of inherent properties. A characterisation of these properties leads to a first attempt for a taxonomy for these diagonalisation methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker T., J. Gill & R. Solovay, Relativisations of the P vs. NP question, SIAM J. Comp. 4 (1975) 431–442Google Scholar
  2. 2.
    Baker T. & A. Selman, A second step toward the polynomial hierarchy, Theoretical Computer Science 8 (1979) 177–187.Google Scholar
  3. 3.
    Balcazar J.L., Simplicity, Relativisations & Nondeterminism, SIAM J. Comp. 14 (1985) 148–157Google Scholar
  4. 4.
    Balcazar J.L., Separating, Strongly Separating and Collapsing Relativised Complexity Classes, Proc. MFCS(Invited Lecture), Lecture Notes in Computer Science 176 (1984) 1–16.Google Scholar
  5. 5.
    Bennet C. & J. Gill, Relative to a Random Oracle P≉NP with probability 1, SIAM J. Comp. 10 (1981) 96–113.Google Scholar
  6. 6.
    Book R.V., Separating Relativised Complexity Classes, to appear.Google Scholar
  7. 7.
    Hartmanis J. & L. Hemachandra, On Sparse Oracles Separating Feasible Complexity Classes, Proc. 3d annual STACS, Lecture Notes in Computer Science 210 (1986) 321–333.Google Scholar
  8. 8.
    Heller H., On Relativised Exponential and Probabilistic Complexity Classes, to appear.Google Scholar
  9. 9.
    Homer S., On Simple and Creative Sets in NP, manuscript (1985).Google Scholar
  10. 10.
    Homer S. & W. Maass, Oracle Dependent Properties of the Lattice of NP Sets, Theoretical Computer Science 24 (1983) 279–289.CrossRefGoogle Scholar
  11. 11.
    Kannan R., Alternation and the power of nondeterminism, Proc. ACM SIGACT STOC 15 (1983) 344–346.Google Scholar
  12. 12.
    Kannan R., Towards separating Nondeterministic Time from Deterministic Time, Proc. IEEE FOCS 22 (1983) 235–243.Google Scholar
  13. 13.
    Kintala C.M.R., and P. Fischer, Refining Nondeterminism in Relativised Polynomial Time Bounded Computations, SIAM J. Comp. 9 (1980) 46–53.Google Scholar
  14. 14.
    Kleene S.C., Recursive predicates and quantifiers, Trans. Am. Math. Soc. 53 (1943) 41–73.Google Scholar
  15. 15.
    Kozen D., Indexing of Subrecursive Languages, Theoretical Computer Science 11(1980) 277–301.Google Scholar
  16. 16.
    Kurtz S., Sparse Sets in NP-P: Relativisations, SIAM J. Comp. 14 (1985) 113–119.Google Scholar
  17. 17.
    Paul W., N. Pippenger, E. Szemerédi & W. Trotter, On determinism versus nondeterminism and related problems, Proc. IEEE FOCS 24 (1983) 429–438.Google Scholar
  18. 18.
    Regan K., On diagonalisation methods and the structure of language classes, Proc. 1983 FCT Conference, Lecture Notes in Computer Science 158 (1983) 368–380.Google Scholar
  19. 19.
    Selman A.L., Xu Mei-Rui & R.V. Book, Positive Relativisations of Complexity Classes, SIAM J. Comp. 12 (1983) 565–579.Google Scholar
  20. 20.
    Schoening U., Relativisations and infinite subsets of NP sets, Unpublished Manuscript (1982).Google Scholar
  21. 21.
    Soare R.I., Recursively Enumerable Sets and Degrees: The Study of Computable Functions and Computably Generated Sets, to appear in Springer Ω series.Google Scholar
  22. 22.
    Stockmeyer L.J., The Polynomial-time Hierarchy, Theoretical Computer Science 3 (1976) 1–22.Google Scholar
  23. 23.
    Torenvliet L. & P. van Emde Boas, Combined Simplicity and Immunity in Relativised NP, Proc. 2nd annual STACS, Lecture Notes in Computer Science 182 (1985) 339–350.Google Scholar
  24. 24.
    Torenvliet L., Towards a strong P-Time Hierarchy, Report Uva-FVI 85-04.Google Scholar
  25. 25.
    Torenvliet L, Simplicity for relativixed Σ2p, Report Uva-FVI 85-05.Google Scholar
  26. 26.
    Wrathall C., Complete sets and the polynomial hierarchy, Theoretical Computer Science 3 (1976) 23–33.CrossRefGoogle Scholar
  27. 27.
    Yao A. C., Separating the Polynomial-Time Hierarchy by Oracles: Part I, Proc. IEEE FOCS 26 (1985) 1–10Google Scholar
  28. 28.
    Young P., Some Structural Porperties of Polynomial Reducibilities and Sets in NP, Proc. ACM SIGACT STOC 15 (1983) 392–401.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Leen Torenvliet
    • 1
  • Peter van Emde Boas
    • 1
  1. 1.Depts of Mathematics & Computer ScienceUniversity of AmsterdamAmsterdam

Personalised recommendations