A depth-size tradeoff for boolean circuits with unbounded fan-in

  • James F. Lynch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 223)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ajtai, ∑11-formulae on finite structures, Ann. Applied and Pure Logic 24 (1983), 1–48.CrossRefGoogle Scholar
  2. 2.
    T. Baker, J. Gill, and R. Solovay, Relativizations of the P-?NP Question, SIAM J. Comp. (1975), 431–442.Google Scholar
  3. 3.
    A. Chandra, S. Fortune, and R. Lipton, Unbounded fan-in circuits and associative functions, Proc. 15th ACM Symp. on Theory of Comp. (1983), 52–60.Google Scholar
  4. 4.
    A. Chandra, L. Stockmeyer, and U. Vishkin, A complexity theory for unbounded fan-in parallelism, Proc. 23rd IEEE Symp. on Found. Comp. Sci. (1982), 1–13.Google Scholar
  5. 5.
    S. Cook, The complexity of theorem-proving procedures, Proc. Third ACM Symp. on Theory of Comp. (1971), 151–158.Google Scholar
  6. 6.
    P. Duris, Z. Galil, W. Paul, and R. Reischuk, Two nonlinear lower bounds, Proc. 15th ACM Symp. on Theory of Comp. (1983), 127–132.Google Scholar
  7. 7.
    R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, Complexity of Computation, R.M. Karp, ed., AMS, Providence (1974), 43–73.Google Scholar
  8. 8.
    R. Fagin, M. Klawe, N. Pippenger, and L. Stockmeyer, Bounded-depth, polynomial-size circuits for symmetric functions, Theoretical Comp. Sci. 36 (1985), 239–250.Google Scholar
  9. 9.
    W. Feller, An Introduction to Probability Theory and its Applications, Vol. I, 3rd ed., Wiley, New York (1968).Google Scholar
  10. 10.
    M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierarchy, Math. Systems Theory 17 (1984), 13–27.CrossRefGoogle Scholar
  11. 11.
    E. Grandjean, The spectra of first-order sentences and computational complexity, SIAM J. Computing 13 (1984), 356–373.Google Scholar
  12. 12.
    L. Henkin, A generalization of the concept of ω-consistency, J. Symbolic Logic 19 (1954), 183–196.Google Scholar
  13. 13.
    F. Hennie, One-tape off-line Turing machine computations, Information and Control 8 (1965), 553–578.CrossRefGoogle Scholar
  14. 14.
    J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Mass. (1979).Google Scholar
  15. 15.
    N. Immerman, Number of quantifiers is better than number of tape cells, J. Comp. Sys. Sci. 22 (1981), 384–406.Google Scholar
  16. 16.
    —, Upper and lower bounds for first-order expressibility, J. Comp. Sys. Sci. 25 (1982), 76–98.Google Scholar
  17. 17.
    N. Jones and A. Selman, Turing machines and the spectra of first-order formulas with equality, J. Symbolic Logic 39 (1974), 139–150.Google Scholar
  18. 18.
    H. Keisler, Forcing and the Omitting Types Theorem, Stud. in Model Theory, MAA Studies in Math., Vol. 8, MAA, Buffalo (1973), 96–133.Google Scholar
  19. 19.
    K. Kuratowski, Topology, Academic Press (1966).Google Scholar
  20. 20.
    J. Lynch, Complexity classes and theories of finite models, Math. Systems Theory 15 (1982), 127–144.CrossRefGoogle Scholar
  21. 21.
    S. Orey, On ω-consistency and related properties, J. Symbolic Logic 21 (1956), 246–252.Google Scholar
  22. 22.
    M. Sipser, Borel sets and circuit complexity, Proc. 15th ACM Symp. on Theory of Comp. (1983), 61–69.Google Scholar
  23. 23.
    —, A topological view of some problems in complexity theory, to appear.Google Scholar
  24. 24.
    A. Yao, Separating the polynomial-time hierarchy by cracles, Proc. 26th IEEE Symp. on Found. Comp. Sci. (1985), 1–10.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • James F. Lynch
    • 1
  1. 1.Department of Mathematics and Computer ScienceClarkson UniversityPotsdam

Personalised recommendations