Advertisement

A Prolog-based Korean-English Machine Translation System and its efficient method of dictionary management

  • J. M. Choi
  • M. S. Song
  • K. J. Jeong
  • H. C. Kwon
  • S. Y. Han
  • Y. T. Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 221)

Abstract

This paper describes a Prolog-based Korean-English Machine Translation System (KEMTS).

KEMTS employs the transfer approach and consists of four separate phases — morphological analysis, parsing, deep structure generation, and English generation.

The implementation described here is based on a syntactic analysis of Hangul (the Korean language) and English, and it applies and extends the work of Marcus.

KEMTS also makes use of a dictionary management system called DProlog in order to overcome the inefficiency of the sequential search in Prolog and to manage the large amount of data conveniently.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyer M, Lapalme G (1985) Generating sentences from semantic networks. In: Dahl V, Saint-Dizier P (eds) Natural language processing and logic programming. North-Holland, 181–189Google Scholar
  2. Carbonell J, Cullingford R, Gershman A (1981) Steps toward knowledge-based machine translation. IEEE Trans on Pattern Analysis and Machine Intelligence 3: 376–392Google Scholar
  3. Chomicki J, Grudzinski W (1983) A database support system for Prolog. Proc Logic programming workshop, Algarve PortugalGoogle Scholar
  4. Chomsky N (1957) Syntactic structures. Mouton, The HagueGoogle Scholar
  5. Clocksin W, Mellish C (1980) The Unix Prolog System. Software Report 5, Univ of EdinburghGoogle Scholar
  6. Huh W (1978) Korean phonology, revised edn. Cheung-Eum Sa, Seoul KoreaGoogle Scholar
  7. Lee H (1970) A study of Korean syntax. Pan Korean Book Corporation, Seoul KoreaGoogle Scholar
  8. Marcus M (1980) A theory of syntactic recognition for natural language. MIT Press, Cambridge MAGoogle Scholar
  9. Minker J, Tran D (1981) Interfacing predicate logic languages and relational databases. TR 1019, Univ of MarylandGoogle Scholar
  10. Naish L, Thom J (1983) The MU-Prolog deductive database. TR 83/10, Univ of MelbourneGoogle Scholar
  11. Pereira F, Warren D (1980) Definite clause grammars for language analysis — a survey of the formalism and a comparison with augmented transition networks. Artificial Intelligence 13: 231–278CrossRefGoogle Scholar
  12. Ramamohanarao K, Lloyd J, Thom J (1983) Partial match retrieval using hashing descriptors. ACM Trans on Database Systems 8: 552–576CrossRefGoogle Scholar
  13. Simmons R (1972) Semantic networks: their computation and use for understanding English sentences. Tech Report NL-6, Univ of Texas at AustinGoogle Scholar
  14. Stabler E (1983) Deterministic and bottom-up parsing in Prolog. Proc Nat Conf on AI, Amer Assoc for AI, 383–386Google Scholar
  15. Tanaka H, Isahara H (1983) An English-Japanese machine translation system using the active dictionary. New Generation Computing 1: 179–185Google Scholar
  16. Tucker A (1984) A perspective on machine translation: theory and practice. Comm ACM 27: 322–329CrossRefGoogle Scholar
  17. Ullman J (1982) Principles of database systems, 2nd edn. Computer Science Press, Rockville MarylandGoogle Scholar
  18. Wilks Y (1973) An artificial intelligence approach to machine translation. In: Schank R, Colby K (eds) Computer models of thought and language. W.H. Freeman and Company, San FranciscoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. M. Choi
    • 1
  • M. S. Song
    • 1
  • K. J. Jeong
    • 1
  • H. C. Kwon
    • 1
  • S. Y. Han
    • 1
  • Y. T. Kim
    • 1
  1. 1.Department of Computer EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations