The influence of spherical aberration on gaussian beam propagation

  • Vladimir I. Man'ko
  • Kurt Bernardo Wolf
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 250)


Gaussian beams include a number of field or wavefunctions which have a clear quantum mechanical analogue: coherent states, correlated coherent states and discrete modes for quantum oscillators. These are used to model optical fibers and to describe the output of laser devices. When these beams leave their source and travel freely through space, they loose their coherence and aberrate. The source of this aberration is purely geometrical, and is termed spherical aberration. We describe this process in the framework of the Fermat-Hamilton formulation of optics, studying the behaviour of the center of the beam, its width, and the way in which the initial uncorrelation of position and momentum is lost.


Coherent State Gaussian Beam Momentum Space Canonical Transformation Free Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Marcuse, Light Transmission Optics, (Van Nostrand, New York, 1972).Google Scholar
  2. [2]
    K.B. Wolf, The Heisenberg-Weyl ring in quantum mechanics. In Group Theory and its Applications, Vol. III, E.M. Loebl, Ed. (Academic Press, New York, 1975).Google Scholar
  3. [3]
    M. Nazarathy and J. Shamir, Fourier optics described by operator algebra, J. Opt. Soc. America 70 150–158 (1980); ib. First-order optics—a canonical operator representation: lossless systems, J. Opt. Soc. America 72, 356–364 (1982).Google Scholar
  4. [4]
    H. Bacry and M. Cadilhac, Metaplectic group and Fourier optics, Phys. Rev. A23, 2533–2536 (1981).Google Scholar
  5. [5]
    J.R. Klauder, Continuous representation theory. II. Generalized relation between quantum and classical dynamics, J. Math. Phys. 5, 177–1187 (1964).Google Scholar
  6. [6]
    R. Glauber, Coherent states of the quantum oscillator, Phys. Rev. Lett. 10, 84 (1963).Google Scholar
  7. [7]
    V.V. Dodonov, E.V. Kurmyshev, and V.I. Man'ko, Generalized uncertainty relation in correlated coherent states, Phys. Lett. 79A, 150–152 (1980).Google Scholar
  8. [8]
    J.A. Arnaud, Beam and Fiber Optics, (Academic Press, New York, 1976).Google Scholar
  9. [9]
    M. Leontovich and V. Fock, Solution of the problem of electromagnetic waves along the earth suface by the method of parabolic equations, Sov. J. Phys. 10, 13 (1946).Google Scholar
  10. [10]
    V.I. Man'ko, Possible applications of the integrals of the motion and coherent state methods for dynamical systems. In Quantum Electrodynamics with Outer Fields (in Russian), (Tomsk State University and Tomsk Pedagogical Institute, Tomsk, USSR, 1977); pp. 101–120.Google Scholar
  11. [11]
    K.B. Wolf, Canonical transforms. I. Complex linear transforms, J. Math. Phys. 15, 1295–1301 (1974).Google Scholar
  12. [12]
    K.B. Wolf, Integral Transforms in Science and Engineering, (Plenum, New York, 1979).Google Scholar
  13. [13]
    M. Born and E. Wolf, Principles of Optics, (Pergamon Press, Oxford, 1959).Google Scholar
  14. [14]
    H. Goldstein, Classical Mechanics, (Addison-Wesley, Reading, Mass. 1950).Google Scholar
  15. [15]
    M.H. Stone, Linear transformations in Hilbert space. I. Geometrical aspects, Proc. Nat. Acad. Sci. U.S. 15, 198–200 (1929); II. Analytical aspects; ibid. 423–425; III. Operator methods and group theory; ibid. 16, 172–175 (1930); J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104, 570–578 (1931).Google Scholar
  16. [16]
    J.H. Van Vleck, The correspondence principle in the statistical interpretation of quantum mechanics, Proc. Nat. Acad. Sci. USA, 14, 178–188 (1982).Google Scholar
  17. [17]
    V.V. Dodonov, V.I. Man'ko, and V.V. Semionov, The density matrix of the canonical transformed Hamiltonian in the Fock basis, P.N. Lebedev Institute of Physics preprint N54, Moscow, 1983.Google Scholar
  18. [18]
    V.I. Man'ko and K.B. Wolf, The influence of aberrations in the optics of gaussian beam propagation. Reporte de Investigación del Depto. de Matemáticas, Universidad Autónoma Metropolitans, preprint 4, # 3 (1985).Google Scholar
  19. [19]
    G. Eichmann, Quasi-geometric optics of media with inhomogeneous index of refraction, J. Opt. Soc. America 61, 161–168 (1971).Google Scholar
  20. [20]
    M. García-Bullé, W. Lassner, and K.B. Wolf, The metaplectic group within the Heisenberg-Weyl ring. Reporte de Investigación del Depto. de Matemáticas, Universidad Autónoma Metropolitans, preprint 4, # 1 (1985); to appear in J. Math. Phys. Google Scholar
  21. [21]
    K.B. Wolf, A euclidean algebra of hamiltonian observables in Lie optics, Kinam 6, 141–156 (1985).Google Scholar
  22. [22]
    J.W. Goodman, Introduction to Fourier Optics, (Mc Graw-Hill, New York, 1968), Section 2–3.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Vladimir I. Man'ko
  • Kurt Bernardo Wolf

There are no affiliations available

Personalised recommendations