Advertisement

Invariants and coherent states in fiber optics

  • Vladimir I. Man'ko
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 250)

Abstract

The aim of this chapter is to review recent results in the quantum mechanics of nonstationary systems, and to demonstrate how they are applied in paraxial fiber optics.

Keywords

Fiber Optic Coherent State Gaussian Beam Refraction Index Hermite Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Leontovich and V. Fock, Solution of the problem of electromagnetic waves along the earth suface by the method of parabolic equations, Sov. J. Phys. 10, 13 (1946).Google Scholar
  2. [2]
    L.M. Brechovskih, Waves in Slab Media (in Russian), (Nauka, Moscow, 1973).Google Scholar
  3. [3]
    J.A. Hudson, A parabolic approximation for elastic waves, Wave Motion 2, 207 (1980).Google Scholar
  4. [4]
    D. Marcuse, Light Transmission Optics, (Van Nostrand, New York, 1972).Google Scholar
  5. [5]
    J.A. Arnaud, Beam and Fiber Optics, (Academic Press, New York, 1976).Google Scholar
  6. [6]
    I.A. Malkin and V.I. Man'ko, Coherent states and excitation of n-dimensional non-stationary forced oscillator, Phys. Lett. 32A, 243 (1970).Google Scholar
  7. [7]
    I.A. Malkin, V.I. Man'ko, and D.A. Trifonov, Linear adiabatic invariants and coherent states, J. Math. Phys. 14, 576 (1973).Google Scholar
  8. [8]
    V.V. Dodonov, I.A. Malkin, and V.I. Man'ko, Integrals of the motion, Green function and coherent states of dynamical systems, Intern. J. Theor. Phys. 14, 37 (1975).Google Scholar
  9. [9]
    V.V. Dodonov and V.I. Man'ko, Coherent states and the resonance of a quantum damped oscillator, Phys. Rev. A20, 550 (1979).Google Scholar
  10. [10]
    I.A. Malkin and V.I. Man'ko, Dynamical Symmetries and Coherent States of Quantum Mechanics (in Russian), (Nauka, Moscow, 1979).Google Scholar
  11. [11]
    V.I. Man'ko, Invariants and symmetries of dynamical systems, In Proceedings of the Second International Colloquium on Group Theoretical Methods in Physics. Vol. 1, (University of Nijmegen, The Netherlands, June 25–29, 1973); pp. A107 et seq.Google Scholar
  12. [12]
    V.I. Man'ko, Possible applications of the integrals of the motion and coherent state methods for dynamical systems. In Quantum Electrodynamics with Outer Fields (in Russian), (Tomsk State University and Tomsk Pedagogical Institute, publishers; Tomsk, USSR, 1977); pp. 101–120.Google Scholar
  13. [13]
    R. Glauber, Coherent states of the quantum oscillator, Phys. Rev. Lett. 10, 84 (1963).Google Scholar
  14. [14]
    I.A. Malkin, V.I. Man'ko, and D.A. Trifonov, Coherent states and excitation charge moving in a time-dependent electromagnetic field, Phys. Rev. 2D, 1370 (1970).Google Scholar
  15. [15]
    I.A. Malkin and V.I. Man'ko, Coherent states of the charged oscillator in a nonstationary magnetic field, Zhurn. Exper. i Teor. Fiz. 59, 1746 (1970).Google Scholar
  16. [16]
    V.V. Dodonov and V.I. Man'ko, Integrals of the motion and dynamics of general nonstationary quadratic Fermi-Bose systems (in Russian), P.N. Lebedev Inst. Trudy 152, 145–193 (1983).Google Scholar
  17. [17]
    I.A. Malkin, V.I. Man'ko, and D.A. Trifonov, Dynamical symmetries of nonstationary systems, Nuovo Cimento 4A, 773 (1971).Google Scholar
  18. [18]
    J.A. Arnaud, Hamilton theory of beam mode propagation. In Progress in Optics, Vol. XI (North Holland, 1973); pp. 249–302.Google Scholar
  19. [19]
    J.A. Arnaud, Nonorthogonal optical waveguides and resonators, BSTJ 49, 2311 (1970).Google Scholar
  20. [20]
    H. Kogelnik, On the propagation of gaussian beams of light through lenslike media incuding those with a loss or gain variation, Applied Optics 4, 1562–1569 (1965).Google Scholar
  21. [21]
    J.A. Arnaud, Mode coupling in first-order optics, J. Opt. Soc. Amer. 61, 751 (1971).Google Scholar
  22. [22]
    E.E. Bergmann, Optical resonators with paraxial modes, Applied Optics 11, 113 (1972).Google Scholar
  23. [23]
    S.G. Krivoshlykov, N.I. Petrov, and I.N. Sissakian, Coherent properties of optical fields in nonhomogeneous media. In Proceedings of the Second International Seminar on Group Theoretical Methods in Physics, Vol. nuII (Zvenigorod, USSR, 1980); pp. 235 et seq.Google Scholar
  24. [24]
    S.G. Krivoshlykov, E.V. Kurmyshev, and I.N. Sissakian, Correlated coherent states in the problems of wave propagations in nonhomogeneous quadratic media. In Proceedings of the Second International Seminar on Group Theoretical Methods in Physics, Vol. II (Zvenigorod, USSR, 1980); pp. 226 et seq.Google Scholar
  25. [25]
    S.G. Krivoshlykov and I.N. Sissakian, Quantum mechanical theory of optical beam propagation in inhomogeneous media, P.N. Lebedev Institute preprint # 117 (1979).Google Scholar
  26. [26]
    S.G. Krivoshlykov and I.N. Sissakian, Mode coupling between two connected multimode parabolic-index optical waveguides, Opt. Quant. Electr. 11, 393–405 (1979).Google Scholar
  27. [27]
    S.G. Krivoshlykov and I.N. Sissakian, Coherent states and light propagation in inhomogeneous media (in Russian), Kvantovaîa Elektronika 7, 553–564 (1980).Google Scholar
  28. [28]
    S.G. Krivoshlykov, N.I. Petrov, and I.N. Sissakian, Spatial coherence of the light source with cosm ϑ diagram in continuous-inhomogeneous media with quadratic refraction index profile (in Russian), Pis'ma Zh. Teor. Fiz. 9, 1489–1494 (1980).Google Scholar
  29. [29]
    S.G. Krivoshlykov, N.I. Petrov, and I.N. Sissakian, Density matrix formalism in problems of propagation of optical fields in weakly inhomogeneous media (in Russian), Institute of General Physics preprint # 10 (1985), to be published in Optical and Quantum Electronics.Google Scholar
  30. [30]
    M. A. Man'ko, Analogue of the Franck-Condon principle for heterolasers (in Russian), Kvantovaîa Elektronika (1985, in press).Google Scholar
  31. [31]
    M. A. Man'ko, Analogue of the Ramsauer effect for heterolasers (in Russian), Kvantovaía Elektronika (1985, in press).Google Scholar
  32. [32]
    M. A. Man'ko, Modes in heterolasers, P.N. Lebedev Inst. Trudy 166 (1986, in press).Google Scholar
  33. [33]
    H. Bacry and M. Cadilhac, Metaplectic group and Fourier optics, Phys. Rev. A23, 2533–2536 (1981).Google Scholar
  34. [34]
    H. Bacry, Group theory and paraxial optics. In Proceedings of the XIII th International Co11oquium on Group Theoretical Methods in Physics (College Park, Maryland, 21–25 May, 1984), W.W. Zachary, Ed. (World Scientific Publ., Singapore, 1984); pp. 215–224.Google Scholar
  35. [35]
    A. Dragt, Lie algebraic theory of geometrical optics and optical aberrations, J. Opt. Soc. Amer. 72, 372–379 (1982).Google Scholar
  36. [35]
    K.B. Wolf, A group-theoretic treatment of gaussian optics and third-order aberrations. In Proceedings of the XII th International Colloquium on Group Theoretical Methods in Physics (Trieste, Italy, 5–10 Sept. 1983). Lecture Notes in Physics # 201, (Springer Verlag, 1984); pp. 133–136.Google Scholar
  37. [37]
    M. Navarro-Saad and K.B. Wolf, Factorization of the phase-space transformation produced by an arbitrary refracting surface. Preprint CINVESTAV, Mexico (April 1984); to appear in J. Opt. Soc. America.Google Scholar
  38. [38]
    K.B. Wolf, Group theoretical methods in aberrating systems. In Proceedings of the XIII th International Colloquium on Group Theoretical Methods in Physics (College Park, Maryland, 21–25 May, 1984), W.W. Zachary, Ed. (World Scientific Publ., Singapore, 1984); pp. 111–114.Google Scholar
  39. [39]
    M. Navarro-Saad and K.B. Wolf, Application of a factorization theorem for ninth-order aberration optics. Comunicaciones Técnicas IIMAS preprint (Desarrollo) # 41, (February 1985). To appear in Journal of Symbolic Computation.Google Scholar
  40. [40]
    K.B. Wolf, Symmetry in Lie optics. Reporte de Investigación, Depto. de Matemáticas, Universidad Autónoma Metropolitana, 4, # 1 (1985); submitted for publication.Google Scholar
  41. [41]
    M. Navarro-Saad and K.B. Wolf, The group theoretical treatment of aberrating systems. I. Aligned lens systems in third aberration order. Comunicaciones Técnicas IIMAS preprint # 363 (1984); K.B. Wolf, ibid. II. Axis-symmetric inhomogeneous systems and fiber optics in third aberration order. Comunicaciones Técnicas IIMAS preprint # 366 (1984). To appear in J. Math. Phys.Google Scholar
  42. [42]
    V.I. Man'ko and K.B. Wolf, The influence of aberrations in the optics of gaussian beam propagation. Reporte de Investigación del Depto. de Matemáticas, Universidad Autónoma Metropolitana, 4, # 3 (1985).Google Scholar
  43. [43]
    E.V. Doktorov, I.A. Malkin, and V.I. Man'ko, Dynamical symmetry and the Franck-Condon principle for polydimensional molecules (in Russian), P.N. Lebedev Inst. Trudy 152, 202 (1983).Google Scholar
  44. [44]
    J.R. Klauder, Continuous representation theory. II. Generalized relation between quantum and classical dynamics, J. Math. Phys. 5, 177–1187 (1964).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Vladimir I. Man'ko

There are no affiliations available

Personalised recommendations