Fourier optics from the perspective of the Heisenberg group

  • Hans Raszillier
  • Walter Schempt
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 250)


We discuss (linear) geometrical optics and its scalar wave counterpart, Fourier optics, as a natural outgrowth of the group theoretical machinery emanating from the symplectic structure of (optical) phase space, as it derives from the Fermat principle. We do, in fact, quantize geometrical optics. The symplectic structure is preserved by the (symplectic) group of linear canonical transformations. Every element of the symplectic group can be realized as a part of an image system in geometrical optics. On the other hand, one may associate a (nilpotent) Lie algebra to the (symplectic) phase space on which the symplectic group Sp (4, ℜ) acts in the natural way. Looking further on the irreducible unitary representations of the underlying simply connected Lie group, the Heisenberg group, one finds that the symplectic action on the Heisenberg group induces a group of unitary transformations in the space of each (infinite-dimensional) irreducible representation. This group, called the metaplectic group, describes the evolution of the (scalar) wave field (Fourier optics) corresponding to the evolution of rays (geometrical optics), and thereby connects the two views on optics. We put emphasis on the interplay of concepts, and for this reason, we also invoke intuition and terminology from classical and quantum mechanics.


Heisenberg Group Symplectic Structure Geometrical Optic Symplectic Group Maslov Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. J. Butterweck, Principles of Data Processing In Progress in Optics, E. Wolf, Ed. (NorthHolland, Amsterdam, 1981).Google Scholar
  2. [2]
    D. Stoler, Operator methods in physical optics, J. Opt. Soc. Am. 71, 334–341 (1981).Google Scholar
  3. [3]
    M. Nazarathy and J. Shamir, First order optics —a canonical operator representation: lossless systems, J. Opt. Soc. Am. 72, 356–364 (1982).Google Scholar
  4. [4]
    V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, 1984).Google Scholar
  5. [5]
    O. N. Stavroudis, The Optics of Rays, Wavefronts, and Caustics (Academic Press, London, 1972).Google Scholar
  6. [6]
    M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).Google Scholar
  7. [7]
    A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111, 143–211 (1964).Google Scholar
  8. [8]
    H. Bacry and M. Cadilhae, The metaplectic group and Fourier optics, Phys. Rev. A23, 2533–2536 (1981).Google Scholar
  9. [9]
    E.C.G. Sudarshan, R. Simon, and N. Mukunda, Paraxial-wave optics and relativistic front description. I. The scalar theory, Phys. Rev. A28, 2933–2942 (1983).Google Scholar
  10. [10]
    N. Mukunda, R. Simon, and E.C.G. Sudarshan, Paraxial-wave optics and relativistic front description. II. The vector theory, Phys. Rev. A28, 2933–2942 (1983).Google Scholar
  11. [11]
    H. Bacry, Group theory and paraxial optics. In Proceedings of the XIII th International Colloquium on Group Theoretical Methods in Physics (College Park, Maryland, 21–25 May, 1984), W.W. Zachary, Ed. (World Scientific Publ., Singapore, 1984); pp. 215–224.Google Scholar
  12. [12]
    R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. 3, 821–843 (1980).Google Scholar
  13. [13]
    W. Schempp, Radar ambiguity functions, the Heisenberg group, and holomorphic theta series, Proc. Amer. Math. Soc. 92, 103–110 (1984).Google Scholar
  14. [14]
    V.P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques (Dunod, Paris, 1972).Google Scholar
  15. [15]
    D.J. Simms and N.M.J. Woodhouse, Lectures on Geometric Quantization, Lecture Notes in Physics, Vol. 53 (Springer Verlag, Berlin, 1976).Google Scholar
  16. [16]
    G. Lion and M. Vergne, The Weil Representation, Maslov Index, and Theta series (Birkhäuser, Basel, 1980).Google Scholar
  17. [17]
    W. Thirring, Lehrbuch der Mathematischen Physik, Vol. 4: Quantenmechanik großer Systeme (Springer Verlag, Wien, 1980).Google Scholar
  18. [18]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, I. Functional Analysis (Academic Press, New York, 1972).Google Scholar
  19. [19]
    A. Papoulis, Ambiguity function in Fourier optics, J. Opt. Soc. Am. 64, 779–788 (1974).Google Scholar
  20. [20]
    R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill, New York, 1965).Google Scholar
  21. [21]
    V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer Verlag, New York, 1978).Google Scholar
  22. [22]
    C. Carathéodory, Geometrische Optik (Springer Verlag, Berlin, 1937).Google Scholar
  23. [23]
    B. Maculow and H.H. Arsenault, Matrix decompositions for nonsymetrical optical systems, J. Opt. Soc. Am. 73, 1360–1366 (1983).Google Scholar
  24. [24]
    L.S. Pontryaghin, V.G. Boltyansky, R.V. Gamkrelidse, and E.F. Mishchenko, Mathematical Theory of Optimal Processes (in Russian), (Nauka, Moscow, 1969).Google Scholar
  25. [25]
    A.E. Bryson Jr. and Yu-chi Ho, Applied Optimal Control (Blaisdell, Waltham Mass., 1969)Google Scholar
  26. [26]
    G.W. Farnell, Measured phase distribution in the image space of a microwave lens, Can. J. Phys. 36, 935–943 (1958).Google Scholar
  27. [27]
    S. Cornbleet, Microwave Optics (Academic Press, London, 1976).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Hans Raszillier
  • Walter Schempt

There are no affiliations available

Personalised recommendations