Analog radar signal design and digital signal processing —a Heisenberg nilpotent Lie group approach

  • Walter Schempp
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 250)


The notions of analog and digital radar auto- and cross-ambiguity functions are on the borderline with mathematics, physics, and electrical engineering. This paper presents the solutions of two problems of analog radar signal design: the synthesis problem (posed in 1953) and the invariance problem for ambiguity surfaces over the symplectic time-frequency plane. Both solutions are achieved via harmonic analysis on the differential principal fiber bundle over the two-dimensional polarized (resp. isotropic) cross-section with structure group isomorphic to the one-dimensional center of the simply connected real Heisenberg nilpotent Lie group. In this way, the linear oscillator representation of the three-dimensional real metaplectic group gives rise to a procedure for generating the energy-preserving linear automorphisms of any given radar ambiguity surface over the time-frequency plane by means of chirp waveforms (linear frequency modulated signals).

In the field of digital signal processing, the Whittaker-Shannon-Kotel'nikov sampling theorem also fits the framework of nilpotent harmonic analysis. The basic idea is to realize the linear Schrödinger representation by the linear lattice representation acting in a complex Hilbert space modeled on the compact Heisenberg nilmanifold, to wit, the differential principal fiber bundle over the two-dimensional compact torus I2 with structure group isomorphic to the one-dimensional center of the reduced real Heisenberg nilpotent Lie group. In the same vein we look upon the finite Fourier transform, and finally, based on the ambiguity surface conservation principle, the paper deals in a geometric way with the phase discontinuity of Fourier and microwave optics. It follows that analog and digital signal processing, as well as Fourier optics, have a deep geometric common root in nilpotent harmonic analysis. As a mathematical by-product of this research, an identity for Laguerre functions of different orders pops up. Some of its special cases, to wit, a collection of new identities for theta constants have been explicitly calculated and numerically checked.


Digital Signal Processing Heisenberg Group Coadjoint Orbit Chirp Signal Laguerre Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Auslander, Lecture Notes on Nil-theta Function. CBMS Regional Conference Series in Mathematics, No. 34. (American Mathematical Society, Providence, R.I., 1977).Google Scholar
  2. [2]
    L. Auslander, A factorization theorem for the Fourier transform of a separable locally compact abelian group. In: Special Functions: Group Theoretical Aspects and Applications, R.A. Askey, T.H. Koornwinder, and W. Schempp, Eds. MLA Series, (Reidel, Dordrecht-Boston-Lancaster, 1984); pp. 261–269.Google Scholar
  3. [3]
    L. Auslander and R. Tolimieri, Is computing with the finite Fourier transform pure or applied Mathematics? Bull. Amer. Math. Soc. (New Series) 1, 847–897 (1979).Google Scholar
  4. [4]
    L. Auslander, R. Tolimieri, and S. Winograd, Hecke's theorem in quadratic reciprocity, finite nilpotent groups and the Cooley-Tukey algorithm, Adv. Math. 43, 122–172 (1982).Google Scholar
  5. [5]
    H. Bacry and M. Cadilhac, The metaplectic group and Fourier optics, Phys. Rev. A 23, 2533–2536 (1981).Google Scholar
  6. [6]
    N.L. Balazs and B.K. Jennings, Wigner's function and other distribution functions in mock phase space, Phys. Rep. 104, 347–391 (1984).Google Scholar
  7. [7]
    M.J. Bastiaans, The Wigner distribution function applied to optical signal and systems. Opt. Comm. 25, 26–30 (1978).Google Scholar
  8. [8]
    M.J. Bastiaans, Wigner distribution functions and its application to first order optics. J. Opt. Soc. Am. 69, 1710–1716 (1979).Google Scholar
  9. [9]
    R. Bellman, A Brief Introduction to Theta Functions, (Holt, Rinehart and Winston, New York, 1961).Google Scholar
  10. [10]
    J. Borwein, Advanced problem No. 6491, Amer. Math. Monthly 92, 217 (1985).Google Scholar
  11. [11]
    K. Brenner, Phasenraumdarstellungen in Optik und Signalverarbeitung. Dissertation. Universität Erlangen-Nürnberg, 1983.Google Scholar
  12. [12]
    K. Brenner and J. Ojeda-Castañeda, Ambiguity function and Wigner distribution function applied to partially coherent imagery. Optica Acta 31, 213–223 (1984).Google Scholar
  13. [13]
    P.L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Expos. (China) 3, 185–212 (1983).Google Scholar
  14. [14]
    T.A.C.M. Claasen and W.F.G. Mecklenbräuker, The Wigner distribution —a tool for timefrequency signal analysis. Part I. Philips J. Res. 35, 217–250 (1980).Google Scholar
  15. [15]
    T.A.C.M. Claasen and W.F.G. Mecklenbräuker, The Wigner distribution —a tool for timefrequency signal analysis. Part II. Philips J. Res. 35, 276–300 (1980).Google Scholar
  16. [16]
    T.A.C.M. Claasen and W.F.G. Mecklenbräuker, The Wigner distribution —a tool for timefrequency signal analysis. Part III. Philips J. Res. 35, 372–389 (1980).Google Scholar
  17. [17]
    D. Gabor, Theory of communication, J. Inst. Elec. Eng. (London) 93, 429–457 (1946).Google Scholar
  18. [18]
    D. Gabor, La théorie des communications et la physique. In: La cybernétique: Théorie du signal et de Pinformation, L. de Broglie, Ed. (Éditions de la Revue d'Optique Théorique et Instrumentale, Paris, 1951); pp. 115–149.Google Scholar
  19. [19]
    M. García-Bullé, W. Lassner, and K.B. Wolf, The metaplectic group within the Heisenberg-Weyl ring. Reporte de Investigación. Departamento de Matemáticas, Universidad Autónoma Metropolitana, Iztapalapa, México 1985; to appear in J. Math. Phys. Google Scholar
  20. [20]
    M.A. Gerzon, Comments on “The delay plane, objective analysis of subjective properties. Part I” J. Audio Eng. Soc. 22, 104–106 (1974).Google Scholar
  21. [21]
    C.C. Grosjean, Note on two identities mentioned by Dr. W. Schempp near the end of the presentation of his paper, In: Proceedings of the Laguerre symposium at Bar-le-Duc 1984. Lecture Notes in Mathematics (Springer Verlag, Heidelberg, 1985); to appear.Google Scholar
  22. [22]
    V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, (Cambridge University Press, 1984).Google Scholar
  23. [23]
    R.C. Heyser, The delay plane, objective analysis of subjective properties. Part 1. J. Audio Eng. Soc. 21, 690–701 (1973).Google Scholar
  24. [24]
    J.R. Higgins, Five short stories about the cardinal series. Bull. Amer. Math. Soc. (New Series) 12, 45–89 (1985).Google Scholar
  25. [25]
    M. Hillary, R.F. O'Connell, M.O. Scully, and E.P. Wigner, Distribution functions in physics: Fundamentals. Phys. Rep. 106, 121–167 (1984).Google Scholar
  26. [26]
    R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (New Series) 3, 821–843 (1980).Google Scholar
  27. [27]
    R. Howe, Quantum mechanics and partial differential equations, J. Funct. Anal. 38, 188–254 (1980).Google Scholar
  28. [28]
    C.P. Janse and A.J.M. Kaizer, Time-frequency distributions of loudspeakers: The application of the Wigner distribution. J. Audio Eng. Soc. 31, 198–223 (1983).Google Scholar
  29. [29]
    A.J. Jerri, The Shannon sampling theorem —its various extensions and applications: A tutorial review. Proc. IEEE 85, 1565–1596 (1977).Google Scholar
  30. [30]
    J.R. Klauder, The design of radar signals having both high range resolution and high velocity resolution, Bell. Syst. Tech. J. 39, 809–820 (1960).Google Scholar
  31. [31]
    J.R. Klauder, A.C. Price, S. Darlington, and W.J. Albersheim, The theory and design of chirp radars, Bell. Syst. Tech. J. 39, 745–808 (1960).Google Scholar
  32. [32]
    C.C. Moore and J.A. Wolf, Square integrable representations of nilpotent groups, Trans. Amer. Math. Soc. 185, 445–462 (1973).Google Scholar
  33. [33]
    J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104, 570–578 (1931).Google Scholar
  34. [34]
    R.D. Ogden and S. Vági, Harmonic analysis of a nilpotent group and function theory on Siegel domains of type II, Adv. Math. 33, 31–92 (1979).Google Scholar
  35. [35]
    A. Papoulis, Ambiguity function in Fourier optics, J. Opt. Soc. Amer. 84, 779–788 (1974).Google Scholar
  36. [38]
    H. Raszillier and W. Schempp, Fourier optics from the perspective of the Heisenberg group. Chapter 2 of this volume.Google Scholar
  37. [37]
    A.W. Rihaczek, Principles of High-Resolution Radar, (McGraw-Hill, New York, 1969).Google Scholar
  38. [38]
    W. Schempp, On the Wigner quasi-probability distribution function III. C.R. Math. Rep. Acad. Sci. Canada 5, 35–40 (1983).Google Scholar
  39. [39]
    W. Schempp, Gruppentheoretische Aspekte der Signalübertragung und der kardinalen Interpolationssplines I. Math. Methods Appl. Sci. 5, 195–215 (1983).Google Scholar
  40. [40]
    W. Schempp, Radar ambiguity functions and the linear Schrödinger representation. In: Anniversary Volume on Approximation Theory and Functional Analysis, P.L. Butzer, R.L. Stens, and B. Sz.-Nagy, Eds., ISNM, Vol. 65. (Birkhäuser, Basel, 1984); pp. 481–491.Google Scholar
  41. [41]
    W. Schempp, Radar ambiguity functions, nilpotent harmonic analysis, and holomorphic theta series. In: Special functions: Group Theoretical Aspects and Applications, R.A. Askey, T.H. Koornwinder, and W. Schempp, Eds., MIA Series, (Reidel, Dordrecht, 1984); pp. 217–260.Google Scholar
  42. [42]
    W Schempp, Radar ambiguity functions of positive type. In: General Inequalities 4, W. Walter, Ed. ISNM, Vol. 71, (Birkhäuser, Basel, 1984); pp. 369–380.Google Scholar
  43. [43]
    W. Schempp, Radar reception and nilpotent harmonic analysis VI. C.R. Math. Rep. Acad. Sci. Canada 6, 179–182 (1984).Google Scholar
  44. [44]
    W. Schempp, Radar ambiguity functions, the Heisenberg group, and holomorphic theta series. Proc. Amer. Math. Soc. 92, 103–110 (1984).Google Scholar
  45. [45]
    W. Schempp, On Gabor information cells. In: Multivariate Approximation Theory III. W. Schempp and K. Zeller, Eds., ISNM, Vol. 75 (Birkhäuser, Basel, 1985); pp. 349–362.Google Scholar
  46. [46]
    W. Schempp, Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory, (Pitman, London), to appear.Google Scholar
  47. [47]
    M. Schmidt, Die relle Heisenberg-Gruppe und einige ihrer Anwendungen in Radarortung und Physik. Diplomarbeit. Lehrstuhl für Mathematik 1 der Universität Siegen, Siegen, 1985.Google Scholar
  48. [48]
    I.J. Schoenberg, Cardinal spline interpolation. Regional Conference Series in Applied Math., Vol. 12. (SIAM, Philadelphia, 1973).Google Scholar
  49. [49]
    M.R. Schroeder, Number Theory in Science and Communication, (Springer Verlag, Heidelberg, 1984).Google Scholar
  50. [50]
    H.W. Schüßler, Digitale Systeme zur Signalverarbeitung. (Springer Verlag, Heidelberg, 1973).Google Scholar
  51. [51]
    J. Schwinger, Unitary operator bases. Proc. Nat. Acad. Sci. USA 46, 570–579 (1960).Google Scholar
  52. [52]
    L.M. Soroko, Holography and Coherent Optics, (Plenum Press, New York, 1980).Google Scholar
  53. [53]
    J.M. Souriau, Géométrie symplectique et physique mathématique, Gazette des Mathématiciens 10, 90–130 (1978).Google Scholar
  54. [54]
    J. Ville, Theorie et applications de la notion de signal analytique, Câbles et Transmissions 2, 61–74 (1948).Google Scholar
  55. [55]
    A. Weil, Sur certains groupes d'opérateures unitairs, Acta Math. 111, 143–211 (1964); also in: Collected papers, Vol. III, (Springer Verlag, Heidelberg, 1980); pp. 1–69.Google Scholar
  56. [56]
    H. Weyl, Gruppentheorie und Quantenmechanik, (Wissenschaftliche Buchgesellsehaft, Darmstadt, 1981).Google Scholar
  57. [57]
    E.P. Wigner, Quantum-mechanical distribution functions revisited. In: Perspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, Eds., (Dover, New York, 1979); pp. 25–36.Google Scholar
  58. [58]
    C.H. Wilcox, The synthesis problem for radar ambiguity functions. MRC Tech. Summary Report, N°. 157. (The University of Wisconsin, 1960).Google Scholar
  59. [59]
    K.B. Wolf, Integral Transforms in Science and Engineering, (Plenum Press, New York, 1979).Google Scholar
  60. [60]
    P.M. Woodward, Probability and Information Theory, with Applications to Radar, (Artech House, Dedham MA, 1980).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Walter Schempp

There are no affiliations available

Personalised recommendations