Advertisement

An SL(3)-Symmetrical F-Gordon equation:ZαB = 1/3 (eZ−e−2Z)

  • B. Gaffet
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 246)

Abstract

An equation originally derived from non-relativistic ideal gasdynamics turns out to be reducible to a Lorentz invariant nonlinear version of the Klein-Gordon equation. We present its interacting soliton solutions, which are here constructed by means of a Bäcklund transformation, starting from the “vacuum”.

Keywords

Triple Product Riemann Invariant Interact Soliton Inverse Scattering Transform Soliton Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L.P. Eisenhart (1960): “Differential Geometry of Curves and Surfaces”, New York: Dover.Google Scholar
  2. (2).
    N. Rosen and H.B. Rosenstock (1952) Phys. Rev. 85, 257.Google Scholar
  3. (3).
    T.H.R. Skyrme (1958) Proc. Roy. Soc. A247, 260.Google Scholar
  4. (4).
    T.H.R. Skyrme (1961) Proc. Roy. Soc. A262, 237.Google Scholar
  5. (5).
    U. Enz (1963) Phys. Rev. 131, 1392.Google Scholar
  6. (6).
    A.C. Scott (1969) Am. J. of Phys. 37, 52.Google Scholar
  7. (7).
    J. Rubinstein (1970) J. Math. Phys 11, 258.Google Scholar
  8. (8).
    J.K. Perring and T.H.R. Skyrme (1962) Nucl. Phys. 31, 550.Google Scholar
  9. (9).
    A. Seeger, H. Donth and A. Kochendörfer (1953) Z. Phys. 134, 173.Google Scholar
  10. (10).
    G. Leibbrandt, R. Morf and Shein-Shion Wang (1980) J. Math. Phys. 21, 1613.Google Scholar
  11. (11).
    F.J. Chinea (1980) J. Math. Phys. 21, 1588.Google Scholar
  12. (12).
    R. Hermann (1978), in “Solitons in Action”, K. Lonngren and A. Scott eds., Academic Press.Google Scholar
  13. (13).
    W.F. Shadwick (1978) J. Math. Phys. 19, 2312.Google Scholar
  14. (14).
    R.K. Dodd and R.K. Bullough (1976) Proc. Roy. Soc. A351, 499; A352, 481.Google Scholar
  15. (15).
    D.W. McLaughlin and A.C. Scott (1973) J. Math. Phys. 14, 1817.Google Scholar
  16. (16).
    B. Gaffet (1984) Physica 11D, 287.Google Scholar
  17. (17).
    B. Gaffet (1984) J. Math. Phys. 25, 245.Google Scholar
  18. (18).
    K.P. Stanyukovich (1954) Dokl. Akad. Nauk. SSSR 96, 441.Google Scholar
  19. (19).
    K.P. Stanyukovich (1960) “Unsteady Motion of Continuous Media”, Pergamon Press.Google Scholar
  20. (20).
    M.H. Martin and G.S.S. Ludford (1954) Commun. on Pure and Applied Math. 7, 45.Google Scholar
  21. (21).
    H. Cabannes (1960) Handbuch der Physik Vol. IX, p. 200. Springer-Verlag.Google Scholar
  22. (22).
    J.A. Steketee (1972) Qu. of Appl. Math. 30, 167.Google Scholar
  23. (23).
    J.A. Steketee (1976) J. of Eng. Math. 10, 69.Google Scholar
  24. (24).
    B. Gaffet (1983) J. Fluid Mech. 134, 179.Google Scholar
  25. (25).
    B. Gaffet (1985) “A Painlevé nonlinear generalization of the Klein-Gordon equation, from nonrelativistic gasdynamics”, subm. J. Math. Phys., Aug. 1985.Google Scholar
  26. (26).
    B. Gaffet (1985) “A 3-parameter class of 1-D gas flows possessing Riemann invariants”, subm. J. Fluid Mech., July 1985.Google Scholar
  27. (27).
    J. Weiss, M. Tabor and G. Carnevale (1983) J. Math. Phys. 24, 522.Google Scholar
  28. (28).
    M.J. Ablowitz, A. Ramani and H. Segur (1978) Nuovo Cimento 23, 233.Google Scholar
  29. (29).
    M.J. Ablowitz, A. Ramani and H. Segur (1980) J. Math. Phys. 21, 715, 1006.Google Scholar
  30. (30).
    P.D. Lax (1968) Commun. Pure Appl. Math. 21, 467.Google Scholar
  31. (31).
    A.C. Scott, F.Y.E. Chu and D.W. McLaughlin (1973), Proc. I.E.E.E. 61, 1443.Google Scholar
  32. (32).
    E.L. Ince (1956) “Ordinary differential equations” Dover, New York.Google Scholar
  33. (33).
    I was not aware of MIkhailov's (34) work on the equation: ρtt − ρxx + 2eρ − 2e−ρ = 0 until the present work has been completed. In particular, Mikhailov shows that the equation is completely integrable and can be solved by a third-order Inverse Scattering Transform. An infinite number of polynomial conserved densities has also been found to exist.Google Scholar
  34. (34).
    A.V. Mikhailov (1980) JETP Letters 30, 414.Google Scholar
  35. (35).
    A.P. Fordy and J. Gibbons (1981) J. Math. Phys. 22, 1170.Google Scholar
  36. (36).
    A.V. Mikhailov (1981) Physica D, 73.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • B. Gaffet
    • 1
  1. 1.Service d'AstrophysiqueCentre d'Etudes Nucléaires de SaclayGif sur Yvette CedexFrance

Personalised recommendations