Advertisement

Hierarchies of poisson brackets for elements of the scattering matrices

  • B. G. Konopelchenko
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 246)

Abstract

The infinite families of Poisson brackets \(\{ S_{i_1 k_1 } (\lambda _1 ),S_{i_2 k_2 } (\lambda _2 )\} _\pi\)(n = 0,1,2,...) between the elements of scattering matrices are calculated for the linear NxN matrix spectral problem and differential spectral problem of an arbitrary order.

Keywords

Poisson Bracket Spectral Problem Arbitrary Order Hamiltonian Structure Infinite Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevski, Theory of solitions. Method of Inverse Problem, Moscow, Nanka, 1980.Google Scholar
  2. 2.
    L.D. Faddeev, in “Solitons”, p. 339, Topics in Current Physics, vol. 17 (1980), Eds. R. Bullough, P. Caudrey.Google Scholar
  3. 3.
    V.E. Zakharov, S.V. Manakov, Teor. Mat. Fyz., 19, 332 (1974).Google Scholar
  4. 4.
    S.V. Manakov, Teor. Mat. Fyz., 28, 172 (1976).Google Scholar
  5. 5.
    L.A. Takhtajan, L.D. Faddeev, Teor. Mat. Fyz., 21, 160 (1974).Google Scholar
  6. 6.
    F. Magri, J. Math. Phys. 19, 1156 (1978).Google Scholar
  7. 7.
    P.P. Kulish, A.G. Reiman, Notes of LOMI Scientific seminars, 77, 134 (1978).Google Scholar
  8. 8.
    E.K. Sklyanin, Notes of LOMI Scientific Seminars, 95, 55 (1980).Google Scholar
  9. 9.
    P.P. Kulish, E.K. Sklyanin, Lecture Notes in Physics, 151, 61 (1982).Google Scholar
  10. 10.
    A.A. Belavin, V.G. Drinfield, Func. Anal. and its AppL., 16, 1 (1982).Google Scholar
  11. 11.
    O. Babelon, H.J. de Vega, C.M. MaiLLet, NucL. Phys. B200 (FS4), 266 (1982).Google Scholar
  12. 12.
    B.G. Konopelchenko, J. Phys. A: Math. Gen., 14, 1237 (1981).Google Scholar
  13. 13.
    V.S. Gerdjikov, P.P. Kulish, Physica 3D, 549 (1981).Google Scholar
  14. 14.
    B.G. Konopelchenko, Forts. Phys. 31, 253 (1983).Google Scholar
  15. 15.
    B.G. Konopelchenko, V.G. Dubrovsky, Lett. Math. Phys., 8, 273 (1984).Google Scholar
  16. 16.
    I.M. Gelfand, L.A. Dikij,Funct. Anal.and its Appl. 10,(1 ), 18 (1976); 10, (4), 13 (1976); 11 (2), 11 (1977); 12 (2), 8 (1978).Google Scholar
  17. 17.
    V.G. Dubrovsky, B.G. Konopelchenko, Forts. Phys., 32, 25 (1984).Google Scholar
  18. 18.
    B.G. Konopelchenko, V.G. Dubrovsky, Ann. Phys., (NY) 156, 265 (1984).Google Scholar
  19. 19.
    B.G. Konopelchenko, V.G. Dubrovsky, Comm. Math. Phys., (to be published).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • B. G. Konopelchenko
    • 1
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesParis

Personalised recommendations