Advertisement

Some features of complete integrability in supersymmetric gauge theories

  • C. Devchand
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 246)

Keywords

Maximal Subgroup Supersymmetric Gauge Theory Twistor Space Loop Algebra Infinitesimal Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]a
    F. Gliozzi, J. Scherk and D. Olive, Nucl. Phys. B122 (1977) 253Google Scholar
  2. [1]b
    L. Brink, J. Schwarz and J. Scherk, Nucl. Phys. B121 (1977) 77.Google Scholar
  3. [2]a
    P. Goddard, J. Nuyts and D. Olive, Nucl. Phys. B125 (1977) 1Google Scholar
  4. [2]b
    C. Montoneu and D. Olive, Phys. Lett. 728 (1977) 117.Google Scholar
  5. [3]
    D. Olive, in Monopoles in Quantum Field Theory (N. Craigie et al, Eds.) World Scientific, 1982.Google Scholar
  6. [4]
    S. Coleman, Phys. Rev. D11 (1975) 2088.Google Scholar
  7. [5]
    L.D. Faddeev, in Proceedings les Houches 1982, Recent Advances in Field Theory and Statistical Mechanics, eds. J.-B. Zuber and R. Stora.Google Scholar
  8. [6]
    M. Atiyah and R.S. Ward, Comm. Math.Phys. 55 (1977) 117.Google Scholar
  9. [7]
    V. Zakharov and S. Manakov, Sov. Sci. Revs. (Phys. Rev.) A1, 133 (1979).Google Scholar
  10. [8]
    P. Lax, Comm. Pure Appl. Math. 21 (1968) 467.Google Scholar
  11. [9]
    M. Luscher and K. Pohlmeyer, Nucl. Phys. 8137 (1978) 46.Google Scholar
  12. [10]
    A. Polyakov, Phys. Lett. 82B (1979) 247.Google Scholar
  13. [11]
    B. Hasslacher and A. Neveu, Nucl. Phys. B151 (1979) 1.Google Scholar
  14. [12]
    C.N. Yang, Phys. Rev. Lett. 33 (1974) 445.Google Scholar
  15. [13]
    M. Davies, P. Houston, J. Leinaas, A. Macfarlane, Phys. Lett. 119B (1982) 187.Google Scholar
  16. [14]
    L. Dolan, Phys. Rev. Lett. 47 (1981) 1371; Phys. Rep. 109 (1984) 1.Google Scholar
  17. [15]
    C. Devchand and D.B. Fairlie, Nucl. Phys. B194 (1982) 232Google Scholar
  18. [15a]
    Ge M.-L. and Y.-S. Wu, Phys. Lett. 108B (1982) 411Google Scholar
  19. [15b]
    K. Ueno and Y. Nakamura, Phys. Lett. 117B (1982) 208.Google Scholar
  20. [16]
    C. Devchand, Nucl. Phys. B238 (1984) 333.Google Scholar
  21. [17]
    M. Sohnius, Nucl. Phys. B136 (1978) 461.Google Scholar
  22. [18]
    E. Witten, Phys. Lett. 77B (1978) 394.Google Scholar
  23. [19]
    C. Devchand, Phys. Rev. D (1985).Google Scholar
  24. [20]
    I.V. Volovich, Lett. Math. Phys. 7 (1983) 517; Theor. Math. Phys. 57 (1983) 1269, I. Aref'eva and I.V. Volovich, Phys. Lett. 149B (1984) 131.Google Scholar
  25. [21]
    L.-L. Chau, Ge M.-L. and Z. Popowicz, Phys. Rev. Lett. 52 (1984) 1940.Google Scholar
  26. [22]
    I.V. Volovich, Phys. Lett. 129B (1983) 429.Google Scholar
  27. [23]
    J. Harnad, J. Hurtubise, M. Legare, and S. Shnider, Nucl. Phys. B256 (1985) 609.Google Scholar
  28. [24]
    This proof of the invariance of eq. (34c) was written down erroneously in ref. [16]. I thank I.V. Volovich for drawing my attention to this error.Google Scholar
  29. [25]
    See e.g. L.-L. Chau, Ge M.-L., A. Sinha and Y.-S. Wu, Phys. Lett. 121B (1983) 391 (and references therein).Google Scholar
  30. [26]
    E.B. Bogomolny, Sov. J. Nucl. Phys. 24 (1976) 449.Google Scholar
  31. [27]
    P. Goddard and D. Olive, Rep. Prog. Phys. 41 (1978) 91Google Scholar
  32. [27a]
    E. Witten and D. Olive, Phys. Lett. 78B (1978) 97Google Scholar
  33. [27b]
    M.A. Lohe, Phys. Lett. 70B (1977) 325Google Scholar
  34. [27c]
    D. Olive, Nucl. Phys. B153 (1979) 1.Google Scholar
  35. [28]
    E. Corrigan, C. Devchand, D.B. Fairlie and J. Nuyts, Nucl. Phys. 8214 (1983).Google Scholar
  36. [29]
    R.S. Ward, Nucl. Phys. B236 (1984) 381.Google Scholar
  37. [30]
    H. Osborn, Phys. Lett. 83B (1979) 321Google Scholar
  38. [30a]
    P. Rossi, Phys. Lett. 99B (1981) 229.Google Scholar
  39. [31]
    C. Devchand and D.B. Fairlie, Phys. Lett. 141B (1984) 73.Google Scholar
  40. [32]
    S. Weinberg, Phys. Lett. 138B (1984) 47.Google Scholar
  41. [33]
    H.J. de Vega, H. Eichenherr and J.M. Maillet, Nucl. Phys. B240, 377 (1984).Google Scholar
  42. [33a]
    H. Eichenherr, in “Non Linear Equations in Classical and Quantum Field Theory”, Ed. by N. Sanchez, Lect. Notes in Phys. 226, 171–195, Springer-Verlag (1985).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • C. Devchand
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of SouthamptonGermany
  2. 2.Fakultat für PhysikUniversität FreiburgGermany

Personalised recommendations