Advertisement

An algebraic framework for inductive program synthesis

  • Klaus P. Jantke
Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 215)

Keywords

Inductive Inference Algebraic Semantic Unit Algebra Abstract Data Type Program Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [01]
    Angluin, Dana / Smith, C.H. A survey of inductive inference: theory and methods, Computing Surveys 15 (1983) 3, 238–269Google Scholar
  2. [02]
    Bergstra, Jan A. / Meyer, J.-J.Ch. On specifying sets of integers, EIK 20 (1984) 10/11, 531–541Google Scholar
  3. [03]
    Bergstra, Jan / Tucker, J.V. A natural data type with finite equational final semantics specification but no effective equational initial semantics specification, Bull. EATCS 11 (1980), 23–33Google Scholar
  4. [04]
    Burstall, Rod / Goguen, J. The semantics of CLEAR, a specification language, in: Abstract Software Specifications (D. Bjorner, ed.), Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1979 (Lecture Notes in Computer Sciences 86)Google Scholar
  5. [05]
    CIP Language Group The Munich Project CIP, Volume 1: The Wide Spectrum Language CIP-L, Springer — Verlag, Berlin-Heidelberg-New York-Tokyo, 1985 (Lecture Notes in Computer Science 183)Google Scholar
  6. [06]
    Ehrig, Hartmut / Mahr, B. Fundamentals of Algebraic Specification 1, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985 (EATCS Monographs on Theoretical Computer Science 6)Google Scholar
  7. [07]
    Goguen, J.A. / Thatcher, J.W. / Wagner, E.G. An initial algebra approach to the specification, correctness, and implementation of abstract data types, in: Current Trends in Programming Methodology, R.T. Yeh (ed.), Prentice-Hall, 1978, 80–149Google Scholar
  8. [08]
    Gold, E. Mark Language identification in the limit, Inf. and Control 10 (1967), 447–474Google Scholar
  9. [09]
    Guttag, John V. The specification and application to programming of abstract data types, Ph. D. Thesis, Univ. of Toronto, 1975Google Scholar
  10. [10]
    Horning, J.J. Combining algebraic specifications in LARCH, in: Formal Methods and Software Development, Vol. 2, H. Ehrig / Ch. Floyd / M. Nivat / J. Thatcher (eds.), Springer-Verlag, Berlin — Heidelberg-New York-Tokyo, 1985 (Lecture Notes in Computer Science 186), 12–26Google Scholar
  11. [11]
    Jantke, Klaus P. A characterization theorem on partial recursive functions and abstract data types, Bull. EATCS 15 (1981), 40–46Google Scholar
  12. [12]
    Jantke, Klaus P. A generalized approach to inductive inference in: Artificial intelligence and information — control system of robots, I. Plander (ed.), North-Holland, 1984, 189–192Google Scholar
  13. [13]
    Jantke, Klaus P. The main proof theoretic problems in inductive inference, in: Frege Conference 1984, G. Wechsung (ed.), Akademie-Verlag Berlin, 1984, 321–330Google Scholar
  14. [14]
    Jantke, Klaus P. Program synthesis by analogy — a two-phased approach, in: Proc. AIMSA'84, W. Bibel / B. Petkoff (eds.), North-Holland, 1985Google Scholar
  15. [15]
    Jantke, Klaus P. The recursive power of algebraic semantics, submitted to EIKGoogle Scholar
  16. [16]
    Klaeren, Herbert A. Algebraische Spezifikationen — Eine Einfuehrung, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983Google Scholar
  17. [17]
    Klette, Reinhard / Wiehagen, R. Research in the theory of inductive inference by GDR mathematicians — a survey, Inf. Sciences 22 (1980), 149–169Google Scholar
  18. [18]
    Naur, P. Intuition in software development, in: Formal Methods and Software Development, Vol. 2, H. Ehrig / Ch. Floyd / M. Nivat / J. Thatcher (eds.), Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985 (Lecture Notes in Computer Science 186), 60–79Google Scholar
  19. [19]
    Nix, Robert P. Editing by example, Yale University, New Haven, Dep. Comp. Sci., Techn. Report 280, 1983Google Scholar
  20. [20]
    Parnas, D.L. / Clements, P.C. A rational design process: how and why to fake it, in: Formal Methods and Software Development, Vol. 2, H. Ehrig / Ch. Floyd / M. Nivat / J. Thatcher (eds.), Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985 (Lecture Notes in Computer Science 186), 80–100Google Scholar
  21. [21]
    Reichel, Horst Structural induction on partial algebras Akademie-Verlag, Berlin, 1984 (Mathematical Research 18)Google Scholar
  22. [22]
    Sannella, Don / Wirsing, M. A kernel language for algebraic specification and implementation, Proc. FCT 1983, BergholmGoogle Scholar
  23. [23]
    Trakhtenbrot, B.A. / Barzdin, J.M. Frinite Automata: Behaviour and Synthesis, North-Holland, 1974Google Scholar
  24. [24]
    Wand, Mitchel Final algebra semantics and data type extensions, J. Computer Syst. Sci. 19 (1979), 27–44Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Klaus P. Jantke
    • 1
  1. 1.Computing CenterHumboldt University BerlinBerlinGerman Democratic Republic

Personalised recommendations